Zero dynamics for networks of waves

Birgit Jacob (Corresponding author), Kirsten A. Morris, Hans Zwart

Onderzoeksoutput: Bijdrage aan tijdschriftTijdschriftartikelAcademicpeer review

1 Citaat (Scopus)

Samenvatting

The zero dynamics of infinite-dimensional systems can be difficult to characterize. The zero dynamics of boundary control systems are particularly problematic. In this paper the zero dynamics of port-Hamiltonian systems are studied. A complete characterization of the zero dynamics for port-Hamiltonian systems with invertible feedthrough as another port-Hamiltonian system on the same state space is given. It is shown that the zero dynamics for any port-Hamiltonian system with commensurate wave speeds are a well-posed system, and are also a port-Hamiltonian system. Examples include wave equations with uniform wave speed on a network. A constructive procedure for calculation of the zero dynamics that can be used for very large system order is provided.

Originele taal-2Engels
Pagina's (van-tot)310-321
Aantal pagina's12
TijdschriftAutomatica
Volume103
DOI's
StatusGepubliceerd - 1 mei 2019

Vingerafdruk Duik in de onderzoeksthema's van 'Zero dynamics for networks of waves'. Samen vormen ze een unieke vingerafdruk.

Citeer dit