Wiener-Hopf analysis of an M/G/1 queue with negative customers and of a related class of random walks

N. Bayer, O.J. Boxma

    Onderzoeksoutput: Bijdrage aan tijdschriftTijdschriftartikelAcademicpeer review

    29 Citaten (Scopus)

    Samenvatting

    Two variants of an M/G/1 queue with negative customers lead to the study of a random walkX n+1=[X n + \mathbbE(sXn )E(sXn) , corresponding to a representation of the data which is suitable for the queueing model. Alternative representations and derivations are discussed. With this formula, we calculate the queue length generating function of an M/G/1 queue with negative customers, in which the negative customers can remove ordinary customers only at the end of a service. If the service is exponential, the arbitrarytime queue length distribution is a mixture of two geometrical distributions.
    Originele taal-2Engels
    Pagina's (van-tot)301-316
    Aantal pagina's16
    TijdschriftQueueing Systems: Theory and Applications
    Volume23
    Nummer van het tijdschrift1-4
    DOI's
    StatusGepubliceerd - 1996

    Vingerafdruk

    Duik in de onderzoeksthema's van 'Wiener-Hopf analysis of an M/G/1 queue with negative customers and of a related class of random walks'. Samen vormen ze een unieke vingerafdruk.

    Citeer dit