Samenvatting
Transaction analysis is an important part in studies aiming to understand consumer behaviour. The first step is defining a proper measure of similarity, or more specifically a distance metric, between transactions. Existing distance metrics on transactional data are built on retailer specific information, such as extensive product hierarchies or a large product catalogue. In this paper we propose a new distance metric that is retailer independent by design, allowing cross-retailer and cross-country analysis. The metric comes with a novel method of finding the importance of categories of products, alternating between unsupervised learning techniques and importance calibration. We test our methodology on a real-world dataset and show how we can identify clusters of consumer behaviour.
Originele taal-2 | Engels |
---|---|
Titel | Machine Learning and Knowledge Discovery in Databases. Applied Data Science and Demo Track - European Conference, ECML PKDD 2020, Proceedings |
Redacteuren | Yuxiao Dong, Dunja Mladenic, Craig Saunders |
Uitgeverij | Springer |
Pagina's | 323-338 |
Aantal pagina's | 16 |
ISBN van geprinte versie | 9783030676698 |
DOI's | |
Status | Gepubliceerd - 25 feb. 2021 |
Evenement | 2020 European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML PKDD 2020) - Virtual, Online, Ghent, België Duur: 14 sep. 2020 → 18 sep. 2020 https://ecmlpkdd2020.net/ |
Publicatie series
Naam | Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) |
---|---|
Volume | 12461 LNAI |
ISSN van geprinte versie | 0302-9743 |
ISSN van elektronische versie | 1611-3349 |
Congres
Congres | 2020 European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML PKDD 2020) |
---|---|
Verkorte titel | ECML PKDD 2020 |
Land/Regio | België |
Stad | Ghent |
Periode | 14/09/20 → 18/09/20 |
Internet adres |