Weighting goals and constraints in fuzzy predictive control

L.F. Mendonca, J.M. Costa Sousa, da, U. Kaymak, J.M.G. Costa, Sa da

Onderzoeksoutput: Bijdrage aan tijdschriftTijdschriftartikelAcademicpeer review

9 Citaten (Scopus)

Samenvatting

Model predictive control (MPC) is a well-known control technique, which has been applied to complex and nonlinear processes. Fuzzy predictive control incorporates fuzzy goals and constraints in MPC, by combining predictive control with fuzzy decision making. In this paper, we propose the integration of weighted criteria in fuzzy predictive control, where the decision-maker can specify the preference for different goals and constraints by using weight factors for each criterion. A new heuristic is proposed to select suitable weight factors that satisfy the overall control objective. In this context, a method to extend the t-norms to the weighted case is also discussed. The weighted approach is validated using a multivariable process: the simulation of a gantry crane system, which shows clear improvements in the control performance when using the weighted fuzzy predictive control approach.
Originele taal-2Engels
Pagina's (van-tot)517-532
Aantal pagina's16
TijdschriftJournal of Intelligent & Fuzzy Systems
Volume17
StatusGepubliceerd - 2006

Vingerafdruk

Duik in de onderzoeksthema's van 'Weighting goals and constraints in fuzzy predictive control'. Samen vormen ze een unieke vingerafdruk.

Citeer dit