TY - JOUR
T1 - Weighted distances in scale‐free preferential attachment models
AU - Jorritsma, Joost
AU - Komjáthy, Júlia
PY - 2020/10/1
Y1 - 2020/10/1
N2 - We study three preferential attachment models where the parameters are such that the asymptotic degree distribution has infinite variance. Every edge is equipped with a nonnegative i.i.d. weight. We study the weighted distance between two vertices chosen uniformly at random, the typical weighted distance, and the number of edges on this path, the typical hopcount. We prove that there are precisely two universality classes of weight distributions, called the explosive and conservative class. In the explosive class, we show that the typical weighted distance converges in distribution to the sum of two i.i.d. finite random variables. In the conservative class, we prove that the typical weighted distance tends to infinity, and we give an explicit expression for the main growth term, as well as for the hopcount. Under a mild assumption on the weight distribution the fluctuations around the main term are tight.
AB - We study three preferential attachment models where the parameters are such that the asymptotic degree distribution has infinite variance. Every edge is equipped with a nonnegative i.i.d. weight. We study the weighted distance between two vertices chosen uniformly at random, the typical weighted distance, and the number of edges on this path, the typical hopcount. We prove that there are precisely two universality classes of weight distributions, called the explosive and conservative class. In the explosive class, we show that the typical weighted distance converges in distribution to the sum of two i.i.d. finite random variables. In the conservative class, we prove that the typical weighted distance tends to infinity, and we give an explicit expression for the main growth term, as well as for the hopcount. Under a mild assumption on the weight distribution the fluctuations around the main term are tight.
KW - first passage percolation
KW - preferential attachment
KW - random networks
KW - typical distances
UR - http://www.scopus.com/inward/record.url?scp=85087497964&partnerID=8YFLogxK
U2 - 10.1002/rsa.20947
DO - 10.1002/rsa.20947
M3 - Article
SN - 1042-9832
VL - 57
SP - 823
EP - 859
JO - Random Structures and Algorithms
JF - Random Structures and Algorithms
IS - 3
ER -