Weight distribution of rank-metric codes

Javier de la Cruz, Elisa Gorla, Hiram H. López, Alberto Ravagnani

Onderzoeksoutput: Bijdrage aan tijdschriftTijdschriftartikelAcademicpeer review

22 Citaten (Scopus)

Samenvatting

In analogy with the Singleton defect for classical codes, we propose a definition of rank defect for rank-metric codes. We characterize codes whose rank defect and dual rank defect are both zero, and prove that the rank distribution of such codes is determined by their parameters. This extends a result by Delsarte on the rank distribution of MRD codes. In the general case of codes of positive defect, we show that the rank distribution is determined by the parameters of the code, together with the number of codewords of small rank. Moreover, we prove that if the rank defect of a code and its dual are both one, and the dimension satisfies a divisibility condition, then the number of minimum-rank codewords and dual minimum-rank codewords is the same. Finally, we discuss how our results specialize to Fqm-linear rank-metric codes in vector representation.

Originele taal-2Engels
Pagina's (van-tot)1-16
Aantal pagina's16
TijdschriftDesigns, Codes and Cryptography
Volume86
Nummer van het tijdschrift1
DOI's
StatusGepubliceerd - 1 jan. 2018

Vingerafdruk

Duik in de onderzoeksthema's van 'Weight distribution of rank-metric codes'. Samen vormen ze een unieke vingerafdruk.

Citeer dit