Wasserstein metric for improved quantum machine learning with adjacency matrix representations

Onur Caylak, O. Anatole von Lilienfeld, Björn Baumeier

Onderzoeksoutput: Bijdrage aan tijdschriftTijdschriftartikelAcademicpeer review

11 Citaten (Scopus)
148 Downloads (Pure)

Samenvatting

We study the Wasserstein metric to measure distances between molecules represented by the atom index dependent adjacency 'Coulomb' matrix, used in kernel ridge regression based supervised learning. Resulting machine learning models of quantum properties, a.k.a. quantum machine learning models exhibit improved training efficiency and result in smoother predictions of energies related to molecular distortions. We first illustrate smoothness for the continuous extraction of an atom from some organic molecule. Learning curves, quantifying the decay of the atomization energy's prediction error as a function of training set size, have been obtained for tens of thousands of organic molecules drawn from the QM9 data set. In comparison to conventionally used metrics (L1 and L2 norm), our numerical results indicate systematic improvement in terms of learning curve off-set for random as well as sorted (by norms of row) atom indexing in Coulomb matrices. Our findings suggest that this metric corresponds to a favorable similarity measure which introduces index-invariance in any kernel based model relying on adjacency matrix representations.
Originele taal-2Engels
Artikelnummer03LT01
Aantal pagina's8
TijdschriftMachine Learning: Science and Technology
Volume1
Nummer van het tijdschrift3
DOI's
StatusGepubliceerd - sep. 2020

Vingerafdruk

Duik in de onderzoeksthema's van 'Wasserstein metric for improved quantum machine learning with adjacency matrix representations'. Samen vormen ze een unieke vingerafdruk.

Citeer dit