Von Staudt constructions for skew-linear and multilinear matroids

Lukas Kühne, Rudi Pendavingh, Geva Yashfe

Onderzoeksoutput: Bijdrage aan tijdschriftTijdschriftartikelAcademicpeer review

19 Downloads (Pure)

Samenvatting

This paper compares skew-linear and multilinear matroid representations. These are matroids that are representable over division rings and (roughly speaking) invertible matrices, respectively. The main tool is the von Staudt construction, by which we translate our problems to algebra. After giving an exposition of a simple variant of the von Staudt construction we present the following results: • Undecidability of several matroid representation problems over division rings. • An example of a matroid with an infinite multilinear characteristic set, but which is not multilinear in characteristic 0. • An example of a skew-linear matroid that is not multilinear.

Originele taal-2Engels
Artikelnummer#16
Aantal pagina's27
TijdschriftCombinatorial Theory
Volume3
Nummer van het tijdschrift1
DOI's
StatusGepubliceerd - 2023

Financiering

∗Supported by a Minerva fellowship of the Max-Planck-Society, the Studienstiftung des deutschen Volkes and by ERC StG 716424 - CASe. †Supported by ERC StG 716424 - CASe and by ISF grant 1050/16.

FinanciersFinanciernummer
Syracuse University
European Research Council716424
Israel Science Foundation1050/16
German National Merit Foundation (Studienstiftung des deutschen Volkes)

    Vingerafdruk

    Duik in de onderzoeksthema's van 'Von Staudt constructions for skew-linear and multilinear matroids'. Samen vormen ze een unieke vingerafdruk.

    Citeer dit