Samenvatting
This paper compares skew-linear and multilinear matroid representations. These are matroids that are representable over division rings and (roughly speaking) invertible matrices, respectively. The main tool is the von Staudt construction, by which we translate our problems to algebra. After giving an exposition of a simple variant of the von Staudt construction we present the following results: • Undecidability of several matroid representation problems over division rings. • An example of a matroid with an infinite multilinear characteristic set, but which is not multilinear in characteristic 0. • An example of a skew-linear matroid that is not multilinear.
Originele taal-2 | Engels |
---|---|
Artikelnummer | #16 |
Aantal pagina's | 27 |
Tijdschrift | Combinatorial Theory |
Volume | 3 |
Nummer van het tijdschrift | 1 |
DOI's | |
Status | Gepubliceerd - 2023 |
Financiering
∗Supported by a Minerva fellowship of the Max-Planck-Society, the Studienstiftung des deutschen Volkes and by ERC StG 716424 - CASe. †Supported by ERC StG 716424 - CASe and by ISF grant 1050/16.
Financiers | Financiernummer |
---|---|
Syracuse University | |
European Research Council | 716424 |
Israel Science Foundation | 1050/16 |
German National Merit Foundation (Studienstiftung des deutschen Volkes) |