Video-based respiration monitoring with automatic region of interest detection

R.J.M. Janssen, Wenjin Wang, A. Moço, G. de Haan

Onderzoeksoutput: Bijdrage aan tijdschriftTijdschriftartikelAcademicpeer review

91 Citaten (Scopus)
1079 Downloads (Pure)

Samenvatting

Vital signs monitoring is ubiquitous in clinical environments and emerging in home-based healthcare applications. Still, since current monitoring methods require uncomfortable sensors, respiration rate remains the least measured vital sign. In this paper, we propose a video-based respiration monitoring method that automatically detects a respiratory region of interest (RoI) and signal using a camera. Based on the observation that respiration induced chest/abdomen motion is an independent motion system in a video, our basic idea is to exploit the intrinsic properties of respiration to find the respiratory RoI and extract the respiratory signal via motion factorization. We created a benchmark dataset containing 148 video sequences obtained on adults under challenging conditions and also neonates in the neonatal intensive care unit (NICU). The measurements obtained by the proposed video respiration monitoring (VRM) method are not significantly different from the reference methods (guided breathing or contact-based ECG; p-value  =  0.6), and explain more than 99% of the variance of the reference values with low limits of agreement (−2.67 to 2.81 bpm). VRM seems to provide a valid solution to ECG in confined motion scenarios, though precision may be reduced for neonates. More studies are needed to validate VRM under challenging recording conditions, including upper-body motion types.
Originele taal-2Engels
Pagina's (van-tot)100-114
TijdschriftPhysiological Measurement
Volume37
Nummer van het tijdschrift1
Vroegere onlinedatum7 dec. 2015
DOI's
StatusGepubliceerd - 2016

Vingerafdruk

Duik in de onderzoeksthema's van 'Video-based respiration monitoring with automatic region of interest detection'. Samen vormen ze een unieke vingerafdruk.

Citeer dit