Video-based fall detection in the home using principal component analysis

L. Hazelhoff, Jungong Han, P.H.N. With, de

Onderzoeksoutput: Hoofdstuk in Boek/Rapport/CongresprocedureConferentiebijdrageAcademicpeer review

59 Citaten (Scopus)

Samenvatting

This paper presents the design and real-time implementation of a fall-detection system, aiming at detecting fall incidents in unobserved home situations. The setup employs two fixed, uncalibrated, perpendicular cameras. The foreground region is extracted from both cameras and for each object, principal component analysis is employed to determine the direction of the main axis of the body and the ratio of the variances in x and y direction. A Gaussian multi-frame classifier helps to recognize fall events using the above two features. The robustness of the system is increased by a head-tracking module, that can reject false positives. We evaluate both performance and efficiency of the system for a variety of scenes: unoccluded situations, cases where the person carries objects and occluded situations. Experiments show that our algorithm can operate at real-time speed with more than 85% fall-detection rate.
Originele taal-2Engels
TitelAdvanced concepts for intelligent vision systems : 10th international conference, ACIVS 2008, Juan-les-Pins, France, October 20-24, 2008 ; proceedings
RedacteurenJacques Blanc-Talon, Salah Bourennane, Wilfried Philips
Plaats van productieBerlin
UitgeverijSpringer
Pagina's298-390
ISBN van geprinte versie978-3-540-88457-6
DOI's
StatusGepubliceerd - 2008

Vingerafdruk

Duik in de onderzoeksthema's van 'Video-based fall detection in the home using principal component analysis'. Samen vormen ze een unieke vingerafdruk.

Citeer dit