Variational Log-Power Spectral Tracking for Acoustic Signals

Onderzoeksoutput: Hoofdstuk in Boek/Rapport/CongresprocedureConferentiebijdrageAcademicpeer review


This paper proposes a generative hierarchical probabilistic model for acoustic signals where both the frequency decomposition and log-power spectrum appear as latent variables. In order to facilitate efficient inference, we represent the model in a factor graph that includes a probabilistic Fourier transform and a Gaussian scale model as modules. We derive novel ways of performing variational message passing-based inference in the Gaussian scale model. As a result, in this model a probabilistic representation of the log-power spectrum of an acoustic signal can be effectively inferred online. The proposed model may find applications as a front end wherever probabilistic log-power spectral features of a signal are needed. We validate the model and message passing-based inference methods by tracking the log-power spectrum of a speech signal.
Originele taal-2Engels
Titel2021 IEEE Statistical Signal Processing Workshop (SSP)
UitgeverijInstitute of Electrical and Electronics Engineers
Aantal pagina's5
ISBN van elektronische versie978-1-7281-5767-2
ISBN van geprinte versie978-1-7281-5768-9
StatusGepubliceerd - 19 aug 2021
Evenement2021 IEEE Statistical Signal Processing Workshop (SSP) - Rio de Janeiro, Brazil
Duur: 11 jul 202114 jul 2021


Congres2021 IEEE Statistical Signal Processing Workshop (SSP)


Duik in de onderzoeksthema's van 'Variational Log-Power Spectral Tracking for Acoustic Signals'. Samen vormen ze een unieke vingerafdruk.

Citeer dit