Variational Germano approach for multiscale formulations

I. Akkerman, S.J. Hulshoff, K.G. Zee, van der, R. Borst, de

    Onderzoeksoutput: Hoofdstuk in Boek/Rapport/CongresprocedureHoofdstukAcademic

    Samenvatting

    In this chapter the recently introduced Variational Germano procedure is revisited. The procedure is explained using commutativity diagrams. A general Germano identity for all types of discretizations is derived. This relation is similar to the Variational Germano identity, but is not restricted to variational numerical methods. Based on the general Germano identity an alternative algorithm, in the context of stabilized methods, is proposed. This partitioned algorithm consists of distinct building blocks. Several options for these building blocks are presented and analyzed and their performance is tested using a stabilized finite element formulation for the convectionU? diffusion equation. Non-homogenous boundary conditions are shown to pose a serious problem for the dissipation method. This is not the case for the leastsquares method although here the issue of basis dependence occurs. The latter can be circumvented by minimizing a dual-norm of the weak relation instead of the Euclidean norm of the discrete residual.
    Originele taal-2Engels
    TitelMultiscale Methods in Computational Mechanics : Progress and Accomplishments
    RedacteurenR. Borst, de, E. Ramm
    Plaats van productieBerlin
    UitgeverijSpringer
    Pagina's53-73
    ISBN van geprinte versie978-90-481-9808-5
    DOI's
    StatusGepubliceerd - 2011

    Publicatie series

    NaamLecture notes in applied and computational mechanics
    Volume55
    ISSN van geprinte versie1613-7736

    Vingerafdruk

    Duik in de onderzoeksthema's van 'Variational Germano approach for multiscale formulations'. Samen vormen ze een unieke vingerafdruk.

    Citeer dit