Samenvatting
In this paper, we explore the convergence of the semi-discrete Scharfetter–Gummel scheme for the aggregation-diffusion equation using a variational approach. Our investigation involves obtaining a novel gradient structure for the finite volume space discretization that works consistently for any non-negative diffusion constant. This allows us to study the discrete-to-continuum and zero-diffusion limits simultaneously. The zero-diffusion limit for the Scharfetter–Gummel scheme corresponds to the upwind finite volume scheme for the aggregation equation. In both cases, we establish a convergence result in terms of gradient structures, recovering the Otto gradient flow structure for the aggregation-diffusion equation based on the 2-Wasserstein distance.
Originele taal-2 | Engels |
---|---|
Pagina's (van-tot) | 2221-2292 |
Aantal pagina's | 72 |
Tijdschrift | Numerische Mathematik |
Volume | 156 |
Nummer van het tijdschrift | 6 |
Vroegere onlinedatum | 13 nov. 2024 |
DOI's | |
Status | Gepubliceerd - dec. 2024 |
Bibliografische nota
Publisher Copyright:© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024.