Variational convergence of the Scharfetter–Gummel scheme to the aggregation-diffusion equation and vanishing diffusion limit

Anastasiia Hraivoronska, André Schlichting, Oliver Tse (Corresponding author)

Onderzoeksoutput: Bijdrage aan tijdschriftTijdschriftartikelAcademicpeer review

1 Citaat (Scopus)

Samenvatting

In this paper, we explore the convergence of the semi-discrete Scharfetter–Gummel scheme for the aggregation-diffusion equation using a variational approach. Our investigation involves obtaining a novel gradient structure for the finite volume space discretization that works consistently for any non-negative diffusion constant. This allows us to study the discrete-to-continuum and zero-diffusion limits simultaneously. The zero-diffusion limit for the Scharfetter–Gummel scheme corresponds to the upwind finite volume scheme for the aggregation equation. In both cases, we establish a convergence result in terms of gradient structures, recovering the Otto gradient flow structure for the aggregation-diffusion equation based on the 2-Wasserstein distance.

Originele taal-2Engels
Pagina's (van-tot)2221-2292
Aantal pagina's72
TijdschriftNumerische Mathematik
Volume156
Nummer van het tijdschrift6
Vroegere onlinedatum13 nov. 2024
DOI's
StatusGepubliceerd - dec. 2024

Bibliografische nota

Publisher Copyright:
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024.

Vingerafdruk

Duik in de onderzoeksthema's van 'Variational convergence of the Scharfetter–Gummel scheme to the aggregation-diffusion equation and vanishing diffusion limit'. Samen vormen ze een unieke vingerafdruk.

Citeer dit