Variable choices of scaling in the homogenization of a Nernst-Planck-Poisson problem

N. Ray, C. Eck, A. Muntean, P. Knabner

Onderzoeksoutput: Boek/rapportRapportAcademic

4 Downloads (Pure)

Samenvatting

We perform the periodic homogenization (i. e. e ¿ 0) of the non-stationary Nernst-Planck-Poisson system using two-scale convergence, where e is a suitable scale parameter. The objective is to investigate the influence of variable choices of scaling in e of the microscopic system of partial differential equations on the structure of the (upscaled) limit model equations. Due to the specific nonlinear coupling of the underlying equations, special attention has to be paid when passing to the limit in the electric drift term. As a direct result of the homogenization procedure, various classes of upscaled model equations are obtained. Keywords: Homogenization, two-scale convergence, porous media, Nernst-Planck-Poisson system, colloidal transport
Originele taal-2Engels
Plaats van productieErlangen-Nürnberg
UitgeverijInstitut für Angewandte Mathematik, Friedrich-Alexander-Universität
Aantal pagina's32
StatusGepubliceerd - 2011

Publicatie series

NaamPreprints des Instituts für Angewandte Mathematik der Universität Erlangen-Nürnberg
Volume344
ISSN van geprinte versie1435-5833

Vingerafdruk

Duik in de onderzoeksthema's van 'Variable choices of scaling in the homogenization of a Nernst-Planck-Poisson problem'. Samen vormen ze een unieke vingerafdruk.

Citeer dit