Validity of WH-frame bound conditions depends on Lattice parameters

H.G. Feichtinger, A.J.E.M. Janssen

Onderzoeksoutput: Bijdrage aan tijdschriftTijdschriftartikelAcademicpeer review

21 Citaten (Scopus)


In the study of Weyl-Heisenberg frames the assumption of having a finite frame upper bound appears recurrently. In this article it is shown that it actually depends critically on the time-frequency lattice used. Indeed, for any irrational a>0 we can construct a smooth g¿ L2(R) such that for any two rationals a >0 and b >0 the collection (gna, mb)n, m¿ Zof time-frequency translates of ghas a finite frame upper bound, while for any ß>0 and any rational c> 0 the collection (gnca, mß)n, m¿ Zhas no such bound. It follows from a theorem of I. Daubechies, as well as from the general atomic theory developed by Feichtinger and Gröchenig, that for any nonzero g¿ L2(R) which is sufficiently well behaved, there exist ac>0, bc>0 such that (gn a, m b)n, m¿ Zis a frame whenever 0 < a < ac, 0 < b < bc. We present two examples of a nonzero g¿ L2(R), bounded and supported by (0, 1), for which such numbers ac, bcdo not exist. In the first one of these examples, the frame bound equals 0 for all a >0, b >0, b <1. In the second example, the frame lower bound equals 0 for all aof the form l· 3- kwith l, k¿ N and all b, 0 < b <1, while the frame lower bound is at least 1 for all aof the form (2 m)- 1with m¿ N and all b, 0 < b <1.
Originele taal-2Engels
Pagina's (van-tot)104-112
Aantal pagina's9
TijdschriftApplied and Computational Harmonic Analysis
Nummer van het tijdschrift1
StatusGepubliceerd - 2000


Duik in de onderzoeksthema's van 'Validity of WH-frame bound conditions depends on Lattice parameters'. Samen vormen ze een unieke vingerafdruk.

Citeer dit