VAE-CE: Visual Contrastive Explanation Using Disentangled VAEs

Onderzoeksoutput: Hoofdstuk in Boek/Rapport/CongresprocedureConferentiebijdrageAcademicpeer review

3 Citaten (Scopus)

Samenvatting

The goal of a classification model is to assign the correct labels to data. In most cases, this data is not fully described by the given set of labels. Often a rich set of meaningful concepts exist in the domain that can describe each datapoint much more precisely. Such concepts can also be highly useful for interpreting the model’s classifications. In this paper we propose Variational Autoencoder-based Contrastive Explanation (VAE-CE), a model that represents data with high-level concepts and uses this representation for both classification and explanation. The explanations are contrastive, conveying why a datapoint is assigned to one class rather than an alternative class. An explanation is specified as a set of transformations of the input datapoint, where each step changes a concept towards the contrastive class. We build the model using a disentangled VAE, extended with a new supervised method for disentangling individual dimensions. An analysis on synthetic data and MNIST validates the utility of the approaches to both disentanglement and explanation generation. Code is available at https://github.com/yoeripoels/vce.
Originele taal-2Engels
TitelAdvances in Intelligent Data Analysis XX - 20th International Symposium on Intelligent Data Analysis, IDA 2022, Proceedings
Subtitel20th International Symposium on Intelligent Data Analysis, IDA 2022, Rennes, France, April 20–22, 2022, Proceedings
RedacteurenTassadit Bouadi, Elisa Fromont, Eyke Hüllermeier
UitgeverijSpringer
Pagina's237-250
Aantal pagina's14
ISBN van elektronische versie978-3-031-01333-1
ISBN van geprinte versie978-3-031-01332-4
DOI's
StatusGepubliceerd - apr. 2022
Evenement20th International Symposium on Intelligent Data Analysis, IDA 2022 - Rennes, Frankrijk
Duur: 20 apr. 202222 apr. 2022

Publicatie series

NaamLecture Notes in Computer Science
UitgeverijSpringer
Volume13205
ISSN van geprinte versie0302-9743
ISSN van elektronische versie1611-3349

Congres

Congres20th International Symposium on Intelligent Data Analysis, IDA 2022
Land/RegioFrankrijk
StadRennes
Periode20/04/2222/04/22

Vingerafdruk

Duik in de onderzoeksthema's van 'VAE-CE: Visual Contrastive Explanation Using Disentangled VAEs'. Samen vormen ze een unieke vingerafdruk.

Citeer dit