Samenvatting
The usage of deep learning models for tagging input data has increased over the past years because of their accuracy and high performance. A successful application is to score sleep stages. In this scenario, models are trained to predict the sleep stages of individuals. Although their predictive accuracy is high, there are still misclassifications that prevent doctors from properly diagnosing sleep-related disorders. This paper presents a system that allows users to explore the output of deep learning models in a real-life scenario to spot and analyze faulty predictions. These can be corrected by users to generate a sequence of sleep stages to be examined by doctors. Our approach addresses a real-life scenario with absence of ground truth. It differs from others in that our goal is not to improve the model itself, but to correct the predictions it provides. We demonstrate that our approach is effective in identifying faulty predictions and helping users to fix them in the proposed use case.
Originele taal-2 | Engels |
---|---|
Pagina's (van-tot) | 1-12 |
Aantal pagina's | 12 |
Tijdschrift | Computer Graphics Forum |
Volume | 38 |
Nummer van het tijdschrift | 3 |
DOI's | |
Status | Gepubliceerd - 21 mrt. 2019 |
Evenement | 21st Eurographics/IEEE VGTC Conference on Visualization - Alfandega do Porto Congress Centre, Porto, Portugal Duur: 3 jun. 2019 → 7 jun. 2019 https://www.eurovis.org/ |
Vingerafdruk
Duik in de onderzoeksthema's van 'V-awake: a visual analytics approach for correcting sleep predictions from deep learning models'. Samen vormen ze een unieke vingerafdruk.Prijzen
-
Eurovis 2019 Honorable Mention
Garcia Caballero, H. (Ontvanger), Westenberg, M. (Ontvanger), Gebre, B. (Ontvanger) & van Wijk, J. (Ontvanger), 7 jun. 2019
Prijs: Anders › Werk, activiteit of publicatie gerelateerde prijzen (lifetime, best paper, poster etc.) › Wetenschappelijk
Bestand
Impact
-
Sleep Medicine
van Gilst, M. M. (Content manager) & van der Hout-van der Jagt, M. B. (Content manager)
Impact: Research Topic/Theme (at group level)