UTRAND: Unsupervised Anomaly Detection in Traffic Trajectories

Onderzoeksoutput: Hoofdstuk in Boek/Rapport/CongresprocedureConferentiebijdrageAcademicpeer review

4 Citaten (Scopus)
4 Downloads (Pure)

Samenvatting

Deep learning-based approaches have achieved significant improvements on public video anomaly datasets, but often do not perform well in real-world applications. This paper addresses two issues: the lack of labeled data and the difficulty of explaining the predictions of a neural network. To this end, we present a framework called uTRAND, that shifts the problem of anomalous trajectory prediction from the pixel space to a semantic-topological domain. The framework detects and tracks all types of traffic agents in bird's-eye-view videos of traffic cameras mounted at an intersection. By conceptualizing the intersection as a patch-based graph, it is shown that the framework learns and models the normal behaviour of traffic agents without costly manual labeling. Furthermore, uTRAND allows to formulate simple rules to classify anomalous trajectories in a way suited for human interpretation. We show that uTRAND outperforms other state-of-the-art approaches on a dataset of anomalous trajectories collected in a real-world setting, while producing explainable detection results.

Originele taal-2Engels
Titel2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, CVPRW 2024
UitgeverijInstitute of Electrical and Electronics Engineers
Pagina's7638-7645
Aantal pagina's8
ISBN van elektronische versie979-8-3503-6547-4
DOI's
StatusGepubliceerd - 27 sep. 2024
Evenement2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW) - Seattle, Verenigde Staten van Amerika
Duur: 17 jun. 202421 jun. 2024

Publicatie series

NaamIEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops
ISSN van geprinte versie2160-7508
ISSN van elektronische versie2160-7516

Congres

Congres2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)
Verkorte titelCVPRW 2024
Land/RegioVerenigde Staten van Amerika
StadSeattle
Periode17/06/2421/06/24

Vingerafdruk

Duik in de onderzoeksthema's van 'UTRAND: Unsupervised Anomaly Detection in Traffic Trajectories'. Samen vormen ze een unieke vingerafdruk.

Citeer dit