Utilizing product design complexity to predict production cycle time learning curves

Onderzoeksoutput: Bijdrage aan congresPaperAcademic

Samenvatting

Predicting learning curves can give organizations a competitive advantage. This study synthesizes learning curve and design structure matrix (DSM) methodologies to quantify product change and complexity in order to estimate the performance of future generations of products. Based on a small-scale experiment and in-depth case studies, we propose a model that forecasts the disruption and subsequent improvement in manufacturing cycle time due to changes in a product. The study contributes to research on how technological complexity impacts organizational learning curves.
Originele taal-2Engels
StatusGepubliceerd - 1 jul. 2022
Evenement29th International Annual EurOMA Conference 2022 - Berlin, Duitsland
Duur: 3 jul. 20226 jul. 2022
Congresnummer: 29
https://www.euroma2022.org/programme

Congres

Congres29th International Annual EurOMA Conference 2022
Verkorte titelEurOMA
Land/RegioDuitsland
StadBerlin
Periode3/07/226/07/22
Internet adres

Vingerafdruk

Duik in de onderzoeksthema's van 'Utilizing product design complexity to predict production cycle time learning curves'. Samen vormen ze een unieke vingerafdruk.

Citeer dit