Universality for first passage percolation on sparse random graphs

S. Bhamidi, R.W. van der Hofstad, G. Hooghiemstra

Onderzoeksoutput: Bijdrage aan tijdschriftTijdschriftartikelAcademicpeer review

11 Citaten (Scopus)
83 Downloads (Pure)

Samenvatting

We consider first passage percolation on the configuration model with n vertices, and general independent and identically distributed edge weights assumed to have a density. Assuming that the degree distribution satisfies a uniform X2 logX-condition, we analyze the asymptotic distribution for the minimal weight path between a pair of typical vertices, as well the number of edges on this path namely the hopcount. Writing Ln for the weight of the optimal path, we show that Ln- (log n)/αn converges to a limiting random variable, for some sequence αn. Furthermore, the hopcount satisfies a central limit theorem (CLT) with asymptotic mean and variance of order log n. The sequence αn and the norming constants for the CLT are expressible in terms of the parameters of an associated continuous-time branching process that describes the growth of neighborhoods around a uniformly chosen vertex in the random graph. The limit of Ln-(log n)/ αn equals the sum of the logarithm of the product of two independent martingale limits, and a Gumbel random variable. So far, for sparse random graph models, such results have only been shown for the special case where the edge weights have an exponential distribution, wherein the Markov property of this distribution plays a crucial role in the technical analysis of the problem. The proofs in the paper rely on a refined coupling between shortest path trees and continuous-time branching processes, and on a Poisson point process limit for the potential closing edges of shortest-weight paths between the source and destination.

Originele taal-2Engels
Pagina's (van-tot)2568-2630
Aantal pagina's63
TijdschriftThe Annals of Probability
Volume45
Nummer van het tijdschrift4
DOI's
StatusGepubliceerd - 1 jul 2017

Vingerafdruk

Duik in de onderzoeksthema's van 'Universality for first passage percolation on sparse random graphs'. Samen vormen ze een unieke vingerafdruk.

Citeer dit