Uniform asymptotic theory of edge diffraction

R.M. Lewis, J. Boersma

Onderzoeksoutput: Hoofdstuk in Boek/Rapport/CongresprocedureHoofdstukAcademicpeer review

2 Downloads (Pure)


Geometrical optics fails to account for the phenomenon of diffraction, i.e., the existence of nonzero fields in the geometrical shadow. Keller's geometrical theory of diffraction accounts for this phenomenon by providing correction terms to the geometrical optics field, in the form of a high-frequency asymptotic expansion. In problems involving screens with apertures, this asymptotic expansion fails at the edge of the screen and on shadow boundaries where the expansion has singularities. The uniform asymptotic theory presented here provides a new asymptotic solution of the diffraction problem which is uniformly valid near edges and shadow boundaries. Away from these regions the solution reduces to that of Keller's theory. However, singularities at any caustics other than the edge are not corrected.
Originele taal-2Engels
TitelSelected Papers on Scalar Wave Diffraction
RedacteurenK.E. Oughstun
Plaats van productieBellingham WA, USA
ISBN van geprinte versie0-8194-0833-6
StatusGepubliceerd - 1992

Publicatie series

NaamSPIE Milestone Series


Duik in de onderzoeksthema's van 'Uniform asymptotic theory of edge diffraction'. Samen vormen ze een unieke vingerafdruk.

Citeer dit