Understanding knowlegde-intensive processes: From traces to instance graphs

Claudia Diamantini, Laura Genga, Domenico Potena

Onderzoeksoutput: Hoofdstuk in Boek/Rapport/CongresprocedureConferentiebijdrageAcademicpeer review

2 Downloads (Pure)

Samenvatting

Enterprise information systems, while support daily activities, typically collect data on executed processes in event logs. These data describe the temporal sequence in which activities were carried out, hiding possible parallelism and other control flows. Representing the structure of each process execution in the form of an Instance Graph, enables managers to discover valuable knowledge on enterprise behaviors. In this work, we describe BIG4ProM, a tool which implements the Building Instance Graph (BIG) algorithm. BIG4ProM exploits filtering Process Discovery algorithms implemented in ProM in order to return the set of instance graphs related to the given event log. The plug-in is conceived to support both expert and standard users.

Originele taal-2Engels
Titel2016 International Conference on High Performance Computing and Simulation, HPCS 2016
RedacteurenVesna Zeljkovic, Waleed W. Smari
UitgeverijInstitute of Electrical and Electronics Engineers
Pagina's218-221
Aantal pagina's4
ISBN van elektronische versie9781509020881
DOI's
StatusGepubliceerd - 13 sep. 2016
Extern gepubliceerdJa
Evenement14th International Conference on High Performance Computing and Simulation, HPCS 2016 - Innsbruck, Oostenrijk
Duur: 18 jul. 201622 jul. 2016

Congres

Congres14th International Conference on High Performance Computing and Simulation, HPCS 2016
Land/RegioOostenrijk
StadInnsbruck
Periode18/07/1622/07/16

Vingerafdruk

Duik in de onderzoeksthema's van 'Understanding knowlegde-intensive processes: From traces to instance graphs'. Samen vormen ze een unieke vingerafdruk.

Citeer dit