Understanding anatomy classification through attentive response maps

Devinder Kumar, Vlado Menkovski, Graham W. Taylor, Alexander Wong

Onderzoeksoutput: Hoofdstuk in Boek/Rapport/CongresprocedureConferentiebijdrageAcademicpeer review

2 Citaten (Scopus)
1 Downloads (Pure)

Samenvatting

One of the main challenges for broad adoption of deep learning based models such as convolutional neural networks (CNN), is the lack of understanding of their decisions. In many applications, a simpler, less capable model that can be easily understood is favorable to a black-box model that has superior performance. In this paper, we present an approach for designing CNNs based on visualization of the internal activations of the model. We visualize the model's response through attentive response maps obtained using a fractional stride convolution technique and compare the results with known imaging landmarks from the medical literature. We show that sufficiently deep and capable models can be successfully trained to use the same medical landmarks a human expert would use. Our approach allows for communicating the model decision process well, but also offers insight towards detecting biases.

Originele taal-2Engels
Titel2018 IEEE 15th International Symposium on Biomedical Imaging, ISBI 2018
Plaats van productiePiscataway
UitgeverijIEEE Computer Society
Pagina's1130-1133
Aantal pagina's4
ISBN van elektronische versie978-1-5386-3636-7
DOI's
StatusGepubliceerd - 23 mei 2018
Evenement15th IEEE International Symposium on Biomedical Imaging (ISBI 2018) - Omni Shoreham Hotel, Washington, Verenigde Staten van Amerika
Duur: 4 apr. 20187 apr. 2018
Congresnummer: 15
https://biomedicalimaging.org/2018/

Congres

Congres15th IEEE International Symposium on Biomedical Imaging (ISBI 2018)
Verkorte titelISBI18
Land/RegioVerenigde Staten van Amerika
StadWashington
Periode4/04/187/04/18
Internet adres

Vingerafdruk

Duik in de onderzoeksthema's van 'Understanding anatomy classification through attentive response maps'. Samen vormen ze een unieke vingerafdruk.

Citeer dit