Uncertain Curve Simplification

Onderzoeksoutput: Hoofdstuk in Boek/Rapport/CongresprocedureConferentiebijdrageAcademicpeer review

Samenvatting

We study the problem of polygonal curve simplification under uncertainty, where instead of a sequence of exact points, each uncertain point is represented by a region which contains the (unknown) true location of the vertex. The regions we consider are disks, line segments, convex polygons, and discrete sets of points. We are interested in finding the shortest subsequence of uncertain points such that no matter what the true location of each uncertain point is, the resulting polygonal curve is a valid simplification of the original polygonal curve under the Hausdorff or the Fréchet distance. For both these distance measures, we present polynomial-time algorithms for this problem.
Originele taal-2Engels
Titel46th International Symposium on Mathematical Foundations of Computer Science, MFCS 2021
SubtitelMFCS 2021
RedacteurenFilippo Bonchi, Simon J. Puglisi
Plaats van productieDagstuhl, Germany
UitgeverijSchloss Dagstuhl - Leibniz-Zentrum für Informatik
Aantal pagina's22
ISBN van elektronische versie978-3-95977-201-3
DOI's
StatusGepubliceerd - 18 aug 2021
Evenement46th International Symposium on Mathematical Foundations of Computer Science - TalTech, Tallinn, Estland
Duur: 23 aug 202127 aug 2021
Congresnummer: 46
https://compose.ioc.ee/mfcs/

Publicatie series

NaamLeibniz International Proceedings in Informatics, LIPIcs
Volume202
ISSN van geprinte versie1868-8969

Congres

Congres46th International Symposium on Mathematical Foundations of Computer Science
Verkorte titelMFCS 2021
Land/RegioEstland
StadTallinn
Periode23/08/2127/08/21
Internet adres

Vingerafdruk

Duik in de onderzoeksthema's van 'Uncertain Curve Simplification'. Samen vormen ze een unieke vingerafdruk.

Citeer dit