Two theorems on lattice expansions

I. Daubechies, A.J.E.M. Janssen

Onderzoeksoutput: Bijdrage aan tijdschriftTijdschriftartikelAcademicpeer review

37 Citaten (Scopus)
189 Downloads (Pure)

Samenvatting

It is shown that there is a tradeoff between the smoothness and decay properties of the dual functions, occurring in the lattice expansion problem. More precisely, it is shown that if g and g¯ are dual, then (1) at least one of H1/2 g and H1/2 g¯ is n in L2(R), and (2) at least one of Hg and g ¯ is not in L2(R). Here, H is the operator -1/(4p2)d2/(dt2 )+t2. The first result is a generalization of a theorem first stated by R.C. Balian (1987). The second result is new and relies heavily on the fact that, when G¿W2,2(S) with S=[-1/2, 1/2]×[-1/2, 1/2] and G(0), than 1/G¿L 2(S)
Originele taal-2Engels
Pagina's (van-tot)3-6
Aantal pagina's4
TijdschriftIEEE Transactions on Information Theory
Volume39
Nummer van het tijdschrift1
DOI's
StatusGepubliceerd - 1993

Vingerafdruk

Duik in de onderzoeksthema's van 'Two theorems on lattice expansions'. Samen vormen ze een unieke vingerafdruk.

Citeer dit