Turbulent oscillating channel flow subjected to a free-surface stress.

W. Kramer, H.J.H. Clercx, V. Armenio

Onderzoeksoutput: Bijdrage aan tijdschriftTijdschriftartikelAcademicpeer review

3 Citaten (Scopus)
96 Downloads (Pure)


The channel flow subjected to a wind stress at the free surface and an oscillating pressure gradient is investigated using large-eddy simulations. The orientation of the surface stress is parallel with the oscillating pressure gradient and a purely pulsating mean flow develops. The Reynolds number is typically Re¿ = 106 and the Keulegan–Carpenter number—the ratio between the oscillation period and advection time scale—is KC = 80. Results compare favorably to the data from direct numerical simulations obtained over a single period. A slowly pulsating mean flow occurs with the turbulent flow essentially being statistically steady. Logarithmic boundary layers are present at both the bottom wall and the free surface. Turbulent streaks are observed in the bottom and free-surface layer. The viscous sublayer below the free surface is, however, much thinner. This observation is verified by simulations we performed for a purely wind-driven channel flow. For the oscillating flow, additional low-speed splats (localized regions of upwelling) occur at the free surface when the mean velocity and stress are in the same direction. © 2010 American Institute of Physics
Originele taal-2Engels
Pagina's (van-tot)095101-1/12
Aantal pagina's12
TijdschriftPhysics of Fluids
Nummer van het tijdschrift9
StatusGepubliceerd - 2010

Vingerafdruk Duik in de onderzoeksthema's van 'Turbulent oscillating channel flow subjected to a free-surface stress.'. Samen vormen ze een unieke vingerafdruk.

Citeer dit