Turbulence on a fractal fourier set

A.S. Lanotte, R. Benzi, L. Biferale, S.K. Malapaka, F. Toschi

Onderzoeksoutput: Boek/rapportRapportAcademic

1 Downloads (Pure)

Samenvatting

The dynamical effects of mode reduction in Fourier space for three dimensional turbulent flows is studied. We present fully resolved numerical simulations of the Navier-Stokes equations with Fourier modes constrained to live on a fractal set of dimension D. The robustness of the energy cascade and vortex stretching mechanisms are tested at changing D, from the standard three dimensional case to a strongly decimated case for D = 2.5, where only about $3\%$ of the Fourier modes interact. While the direct energy cascade persist, deviations from the Kolmogorov scaling are observed in the kinetic energy spectra. A model in terms of a correction with a linear dependency on the co-dimension of the fractal set, $E(k)\sim k^{- 5/3 + 3 -D }$, explains the results. At small scales, the intermittent behaviour due to the vorticity production is strongly modified by the fractal decimation, leading to an almost Gaussian statistics already at D ~ 2.98. These effects are connected to a genuine modification in the triad-to-triad nonlinear energy transfer mechanism.
Originele taal-2Engels
Uitgeverijs.n.
Aantal pagina's5
StatusGepubliceerd - 2015

Publicatie series

NaamarXiv
Volume1505.07984 [physics.flu-dyn]

Vingerafdruk

Duik in de onderzoeksthema's van 'Turbulence on a fractal fourier set'. Samen vormen ze een unieke vingerafdruk.

Citeer dit