Tuning nonlinear state-space models using unconstrained multiple shooting

Jan Decuyper, Mark C. Runacres, Johan Schoukens, Koen Tiels

Onderzoeksoutput: Bijdrage aan tijdschriftCongresartikelpeer review

4 Citaten (Scopus)
103 Downloads (Pure)

Samenvatting

A persisting challenge in nonlinear dynamical modelling is parameter inference from data. Provided that an appropriate model structure was selected, the identification problem is profoundly affected by a choice of initialisation. A particular challenge that may arise is initialisation within a region of the parameter space where the model is not contractive. Exploring such regions is not feasible using the conventional optimisation tools for they require a bounded evaluation of the cost. This work proposes an unconstrained multiple shooting technique, able to mitigate stability issues during the optimisation of nonlinear state-space models. The technique is illustrated on simulation results of a Van der Pol oscillator and benchmark results on a Bouc-Wen hysteretic system.

Originele taal-2Engels
Pagina's (van-tot)334-340
Aantal pagina's7
TijdschriftIFAC-PapersOnLine
Volume53
Nummer van het tijdschrift2
DOI's
StatusGepubliceerd - nov. 2020
Evenement21st World Congress of the International Federation of Aufomatic Control (IFAC 2020 World Congress) - Berlin, Duitsland
Duur: 12 jul. 202017 jul. 2020
Congresnummer: 21
https://www.ifac2020.org/

Vingerafdruk

Duik in de onderzoeksthema's van 'Tuning nonlinear state-space models using unconstrained multiple shooting'. Samen vormen ze een unieke vingerafdruk.

Citeer dit