Travel Time Prediction and Explanation with Spatio-Temporal Features: A Comparative Study

Irfan Ahmed, Indika P.K. Weerasingha Dewage (Corresponding author), Vahideh Reshadat, A.S.M. Kayes, Willem-Jan A.M. van den Heuvel, Damien Andrew Tamburri

Onderzoeksoutput: Bijdrage aan tijdschriftTijdschriftartikelAcademicpeer review

15 Citaten (Scopus)
173 Downloads (Pure)

Samenvatting

Travel time information is used as input or auxiliary data for tasks such as dynamic navigation, infrastructure planning, congestion control, and accident detection. Various data-driven Travel Time Prediction (TTP) methods have been proposed in recent years. One of the most challenging tasks in TTP is developing and selecting the most appropriate prediction algorithm. The existing studies that empirically compare different TTP models only use a few models with specific features. Moreover, there is a lack of research on explaining TTPs made by black-box models. Such explanations can help to tune and apply TTP methods successfully. To fill these gaps in the current TTP literature, using three data sets, we compare three types of TTP methods (ensemble tree-based learning, deep neural networks, and hybrid models) and ten different prediction algorithms overall. Furthermore, we apply XAI (Explainable Artificial Intelligence) methods (SHAP and LIME) to understand and interpret models’ predictions. The prediction accuracy and reliability for all models are evaluated and compared. We observed that the ensemble learning methods, i.e., XGBoost and LightGBM, are the best performing models over the three data sets, and XAI methods can adequately explain how various spatial and temporal features influence travel time.
Originele taal-2Engels
Artikelnummer106
Aantal pagina's18
TijdschriftElectronics
Volume11
Nummer van het tijdschrift1
DOI's
StatusGepubliceerd - 1 jan. 2022

Vingerafdruk

Duik in de onderzoeksthema's van 'Travel Time Prediction and Explanation with Spatio-Temporal Features: A Comparative Study'. Samen vormen ze een unieke vingerafdruk.

Citeer dit