Transition time asymptotics of queue-based activation protocols in random-access networks

S.C. Borst, F. den Hollander, F.R. Nardi, M. Sfragara (Corresponding author)

Onderzoeksoutput: Bijdrage aan tijdschriftTijdschriftartikelAcademicpeer review

5 Citaten (Scopus)

Samenvatting

We consider networks where each node represents a server with a queue. An active node deactivates at unit rate. An inactive node activates at a rate that depends on its queue length, provided none of its neighbors is active. For complete bipartite networks, in the limit as the queues become large, we compute the average transition time between the two states where one half of the network is active and the other half is inactive. We show that the law of the transition time divided by its mean exhibits a trichotomy, depending on the activation rate functions.

Originele taal-2Engels
Pagina's (van-tot)7483-7517
Aantal pagina's35
TijdschriftStochastic Processes and their Applications
Volume130
Nummer van het tijdschrift12
DOI's
StatusGepubliceerd - dec. 2020

Bibliografische nota

Funding Information:
Funding: This work was supported by the Netherlands Organisation for Scientific Research (NWO) [Gravitation Grant number 024.002.003–NETWORKS ].

Publisher Copyright:
© 2020 Elsevier B.V.

Financiering

Funding: This work was supported by the Netherlands Organisation for Scientific Research (NWO) [Gravitation Grant number 024.002.003–NETWORKS ].

Vingerafdruk

Duik in de onderzoeksthema's van 'Transition time asymptotics of queue-based activation protocols in random-access networks'. Samen vormen ze een unieke vingerafdruk.

Citeer dit