Transition metal doping of Pd(1 1 1) for the NO + CO reaction

L. Zhang, I.A.W. Filot, Y. Su, J. Liu, E.J.M. Hensen

Onderzoeksoutput: Bijdrage aan tijdschriftTijdschriftartikelAcademicpeer review

7 Citaten (Scopus)
149 Downloads (Pure)


The replacement of platinum group metals by non-noble metals has attracted significant attention in the field of three-way catalysis. Here, we use DFT calculations to comprehensively study NO reduction by CO and CO oxidation on Pd(1 1 1) and transition metal doped Pd(1 1 1). Whilst direct NO dissociation is very difficult on metallic Pd(1 1 1), doping with transition metals can substantially lower the reaction barrier for NO dissociation. The lowest barrier is predicted for Ti-doped Pd(1 1 1). An electronic structure analysis shows that the low barrier is due to the strong adsorption of N and O on surface sites involving Ti atoms. It relates to strong hybridization of the N and O orbitals with the half-filled d-band of the metallic surface. At the same time, the anti-bonding states are shifted above the Fermi level, which further strengthens the adsorption of N and O. A Brønsted-Evans-Polanyi relation for NO dissociation on TM-doped Pd(1 1 1) surfaces is identified. The complete reaction pathway for N2, N2O and CO2 formation on Pd(1 1 1) and Ti-doped Pd(1 1 1) was considered. Besides more facile NO dissociation, the energy barrier for CO oxidation is decreased for the Ti-doped surface. Microkinetics simulations confirm that the activity and selectivity for NO reduction and CO oxidation are drastically improved after Ti doping. Our findings indicate that doping of Pd with non-noble metal can further improve the performance of three-way catalysts.

Originele taal-2Engels
Pagina's (van-tot)154-163
Aantal pagina's10
TijdschriftJournal of Catalysis
StatusGepubliceerd - 1 jul 2018

Vingerafdruk Duik in de onderzoeksthema's van 'Transition metal doping of Pd(1 1 1) for the NO + CO reaction'. Samen vormen ze een unieke vingerafdruk.

  • Citeer dit