Transition from no-ELM response to pellet ELM triggering during pedestal build-up - insights from extended MHD simulations

the ASDEX-Upgrade team, EUROfusion MST1 Team, S. Futatani (Corresponding author), A. Cathey, M. Hoelzl, P.T. Lang, G.T.A. Huijsmans, M. Dunne

Onderzoeksoutput: Bijdrage aan tijdschriftTijdschriftartikelAcademicpeer review

10 Citaten (Scopus)

Samenvatting

Pellet edge localized mode (ELM) triggering is a well-established scheme for decreasing the time between two successive ELM crashes below its natural value. Reliable ELM pacing has been demonstrated experimentally in several devices, increasing the ELM frequency considerably. However, it was also shown that the frequency cannot be increased arbitrarily due to a so-called lag-time. During this time, after a preceding natural or triggered ELM crash, neither a natural ELM crash occurs nor is it possible to trigger an ELM crash by pellet injection. For this article, pellet ELM triggering simulations are advanced beyond previous studies in two ways. Firstly, realistic E B and diamagnetic background flows are included. And secondly, the pellet is injected at different stages of the pedestal build-up. This allows us to recover the lag time for the first time in simulations and investigate it in detail. A series of nonlinear extended MHD simulations is performed to investigate the plasma dynamics resulting from an injection at different time points during the pedestal build-up. The experimentally observed lag-time is qualitatively reproduced. In particular, a sharp transition is observed between the regime where no ELMs can be triggered and the regime where pellet injection causes an ELM crash. Via variations of pellet parameters and injection time, the two regimes are studied and compared in detail, revealing pronounced differences in the nonlinear dynamics. The toroidal mode spectrum is significantly broader when an ELM crash is triggered, enhancing the stochasticity and therefore also the losses of thermal energy along magnetic field lines. In the heat fluxes to the divertor targets, pronounced toroidal asymmetries are observed. In the case of high injection velocities leading to deep penetration, the excitation of core modes like the 2/1 neoclassical tearing mode is also observed.

Originele taal-2Engels
Artikelnummer046043
Aantal pagina's26
TijdschriftNuclear Fusion
Volume61
Nummer van het tijdschrift4
DOI's
StatusGepubliceerd - apr. 2021

Bibliografische nota

Publisher Copyright:
© EURATOM 2021.

Financiering

FinanciersFinanciernummer
Horizon 2020 Framework Programme633053

    Vingerafdruk

    Duik in de onderzoeksthema's van 'Transition from no-ELM response to pellet ELM triggering during pedestal build-up - insights from extended MHD simulations'. Samen vormen ze een unieke vingerafdruk.

    Citeer dit