Transient behavior of the Halfin-Whitt diffusion

Onderzoeksoutput: Bijdrage aan tijdschriftTijdschriftartikelAcademicpeer review

9 Citaten (Scopus)


We consider the heavy-traffic approximation to the GI/M/s queueing system in the Halfin–Whitt regime, where both the number of servers s and the arrival rate ¿ grow large (taking the service rate as unity), with ¿ = s - ß \sqrt{s} and ß some constant. In this asymptotic regime, the queue length process can be approximated by a diffusion process that behaves like a Brownian motion with drift above zero and like an Ornstein–Uhlenbeck process below zero. We analyze the transient behavior of this hybrid diffusion process, including the transient density, approach to equilibrium, and spectral properties. The transient behavior is shown to depend on whether ß is smaller or larger than the critical value ß*˜1.85722, which confirms the recent result of Gamarnik and Goldberg (2008).
Originele taal-2Engels
Pagina's (van-tot)1524-1545
TijdschriftStochastic Processes and their Applications
Nummer van het tijdschrift7
StatusGepubliceerd - 2011


Duik in de onderzoeksthema's van 'Transient behavior of the Halfin-Whitt diffusion'. Samen vormen ze een unieke vingerafdruk.

Citeer dit