Transient analysis of the Erlang A model

Onderzoeksoutput: Boek/rapportRapportAcademic

Samenvatting

We consider the Erlang A model, or $M/M/m+M$ queue, with Poisson arrivals, exponential service times, and $m$ parallel servers, and the property that waiting customers abandon the queue after an exponential time. The queue length process is in this case a birth-death process, for which we obtain explicit expressions for the Laplace transforms of the time-dependent distribution and the first passage time. These two transient characteristics were generally presumed to be intractable. Solving for the Laplace transforms involves using Green's functions and contour integrals related to hypergeometric functions. Our results are specialized to the $M/M/\infty$ queue, the $M/M/m$ queue, and the $M/M/m/m$ loss model. We also obtain some corresponding results for diffusion approximations to these models.
Originele taal-2Engels
Uitgeverijs.n.
Aantal pagina's27
StatusGepubliceerd - 2014

Publicatie series

NaamarXiv
Volume1412.2982 [math.PR]

Vingerafdruk Duik in de onderzoeksthema's van 'Transient analysis of the Erlang A model'. Samen vormen ze een unieke vingerafdruk.

  • Citeer dit

    Knessl, C., & Leeuwaarden, van, J. S. H. (2014). Transient analysis of the Erlang A model. (arXiv; Vol. 1412.2982 [math.PR]). s.n.