Transferring from ex-vivo to in-vivo: instrument localization in 3D cardiac ultrasound using Pyramid-UNet with hybrid loss

Hongxu Yang, Caifeng Shan, Tao Tan, Alexander F. Kolen, Peter de With

Onderzoeksoutput: Hoofdstuk in Boek/Rapport/CongresprocedureConferentiebijdrageAcademicpeer review

12 Citaten (Scopus)

Samenvatting

Automated instrument localization during cardiac interventions is essential to accurately and efficiently interpret a 3D ultrasound (US) image. In this paper, we propose a method to automatically localize the cardiac intervention instrument (RF-ablation catheter or guidewire) in a 3D US volume. We propose a Pyramid-UNet, which exploits the multi-scale information for better segmentation performance. Furthermore, a hybrid loss function is introduced, which consists of contextual loss and class-balanced focal loss, to enhance the performance of the network in cardiac US images. We have collected a challenging ex-vivo dataset to validate our method, which achieves a Dice score of 69.6% being 18.8% higher than the state-of-the-art methods. Moreover, with the pre-trained model on the ex-vivo dataset, our method can be easily adapted to the in-vivo dataset with several iterations and then achieves a Dice score of 65.8% for a different instrument. With segmentation, instruments can be localized with an average error less than 3 voxels in both datasets. To the best of our knowledge, this is the first work to validate the image-based method on in-vivo cardiac datasets.

Originele taal-2Engels
TitelMedical Image Computing and Computer Assisted Intervention – MICCAI 2019 - 22nd International Conference, Proceedings
RedacteurenDinggang Shen, Pew-Thian Yap, Tianming Liu, Terry M. Peters, Ali Khan, Lawrence H. Staib, Caroline Essert, Sean Zhou
Plaats van productieBerlin
UitgeverijSpringer
Pagina's263-271
Aantal pagina's9
ISBN van geprinte versie9783030322533
DOI's
StatusGepubliceerd - 2019
Evenement22nd International Conference on Medical Image Computing and Computer Assisted Intervention, (MICCAI2019) - Shenzhen, China
Duur: 13 okt. 201917 okt. 2019
https://www.miccai2019.org/

Publicatie series

NaamLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume11768 LNCS
ISSN van geprinte versie0302-9743
ISSN van elektronische versie1611-3349

Congres

Congres22nd International Conference on Medical Image Computing and Computer Assisted Intervention, (MICCAI2019)
Verkorte titelMICCAI 2019
Land/RegioChina
StadShenzhen
Periode13/10/1917/10/19
Internet adres

Vingerafdruk

Duik in de onderzoeksthema's van 'Transferring from ex-vivo to in-vivo: instrument localization in 3D cardiac ultrasound using Pyramid-UNet with hybrid loss'. Samen vormen ze een unieke vingerafdruk.

Citeer dit