Towards Scalable Abnormal Behavior Detection in Automated Surveillance

Onderzoeksoutput: Hoofdstuk in Boek/Rapport/CongresprocedureConferentiebijdrageAcademicpeer review

1 Citaat (Scopus)
2 Downloads (Pure)

Samenvatting

This study presents a scalable automated video surveillance framework that (1) automatically detects the occurrences of abnormal behavior patterns by both pedestrians and vehicles, and (2) directs the focus of the security personnel to the relevant camera view, thereby providing global situational awareness. Powered by deep learning, our methodology can detect both vision and location-based abnormalities, including the events of vandalism, violence, loitering, scouting, and speeding. The proposed framework requires a low initial investment cost and features both real-time detection of various abnormal behaviors and post-crime analysis in scalable form, by enabling wide-area multi-camera networks with person/object re-identification. By combining multiple functionalities in an efficient framework, the proposed system opens up new possibilities for surveillance.
Originele taal-2Engels
TitelProceedings - 2021 4th International Conference on Artificial Intelligence for Industries, AI4I 2021
UitgeverijInstitute of Electrical and Electronics Engineers
Pagina's21-24
Aantal pagina's4
ISBN van elektronische versie978-1-6654-3410-2
ISBN van geprinte versie978-1-6654-3411-9
DOI's
StatusGepubliceerd - 13 okt. 2021
Evenement4th International Conference on Artificial Intelligence for Industries, AI4I 2021 - Laguna Hills, Verenigde Staten van Amerika
Duur: 20 sep. 202122 sep. 2021
Congresnummer: 4

Congres

Congres4th International Conference on Artificial Intelligence for Industries, AI4I 2021
Verkorte titelAI4I 2021
Land/RegioVerenigde Staten van Amerika
StadLaguna Hills
Periode20/09/2122/09/21

Vingerafdruk

Duik in de onderzoeksthema's van 'Towards Scalable Abnormal Behavior Detection in Automated Surveillance'. Samen vormen ze een unieke vingerafdruk.

Citeer dit