Towards Robust Classification with Deep Generative Forests

Onderzoeksoutput: Hoofdstuk in Boek/Rapport/CongresprocedureConferentiebijdrageAcademicpeer review

21 Downloads (Pure)


Decision Trees and Random Forests are among the most widely used machine learning models, and often achieve state-of-the-art performance in tabular, domain-agnostic datasets. Nonetheless, being primarily discriminative models they lack principled methods to manipulate the uncertainty of predictions. In this paper, we exploit Generative Forests (GeFs), a recent class of deep probabilistic models that addresses these issues by extending Random Forests to generative models representing the full joint distribution over the feature space. We demonstrate that GeFs are uncertainty-aware classifiers, capable of measuring the robustness of each prediction as well as detecting out-of-distribution samples.
Originele taal-2Engels
TitelICML 2020 Workshop on Uncertainty and Robustness in Deep Learning
StatusGepubliceerd - 11 jul. 2020
Evenement37th International Conference on Machine Learning (ICML 2020) -
Duur: 12 jul. 202018 jul. 2020
Congresnummer: 37


Congres37th International Conference on Machine Learning (ICML 2020)
Verkorte titelICML 2020


  • stat.ML
  • cs.LG


Duik in de onderzoeksthema's van 'Towards Robust Classification with Deep Generative Forests'. Samen vormen ze een unieke vingerafdruk.

Citeer dit