Towards parameter-optimized vessel re-identification based on IORnet

Amir Ghahremani, Yitian Kong, Egor Bondarev, Peter H.N. de With

Onderzoeksoutput: Hoofdstuk in Boek/Rapport/CongresprocedureConferentiebijdrageAcademicpeer review

7 Citaten (Scopus)

Samenvatting

Reliable vessel re-identification would enable maritime surveillance systems to analyze the behavior of vessels by drawing their accurate trajectories, when they pass along different camera locations. However, challenging outdoor conditions and varying viewpoint appearances combined with the large size of vessels limit conventional methods to obtain robust re-identification performance. This paper employs CNNs to address these challenges. In this paper, we propose an Identity Oriented Re-identification network (IORnet), which improves the triplet method with a new identity-oriented loss function. The resulting method increases the feature vector similarities between vessel samples belonging to the same vessel identity. Our experimental results reveal that the proposed method achieves 81.5% and 91.2% on mAP and Rank1 scores, respectively. Additionally, we report experimental results with data augmentation and hyper-parameters optimization to facilitate reliable ship re-identification. Finally, we provide our real-world vessel re-identification dataset with various annotated multi-class features to public access.

Originele taal-2Engels
TitelComputational Science - ICCS 2019 - 19th International Conference, 2019, Proceedings
RedacteurenJack J. Dongarra, João M.F. Rodrigues, Pedro J.S. Cardoso, Jânio Monteiro, Roberto Lam, Valeria V. Krzhizhanovskaya, Michael H. Lees, Peter M.A. Sloot
Plaats van productieCham
UitgeverijSpringer
Pagina's125-136
Aantal pagina's12
ISBN van elektronische versie978-3-030-22750-0
ISBN van geprinte versie978-3-030-22749-4
DOI's
StatusGepubliceerd - 8 jun. 2019
Evenement19th International Conference on Computational Science, ICCS 2019 - Faro, Portugal
Duur: 12 jun. 201914 jun. 2019

Publicatie series

NaamLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume11540 LNCS
ISSN van geprinte versie0302-9743
ISSN van elektronische versie1611-3349

Congres

Congres19th International Conference on Computational Science, ICCS 2019
Land/RegioPortugal
StadFaro
Periode12/06/1914/06/19

Vingerafdruk

Duik in de onderzoeksthema's van 'Towards parameter-optimized vessel re-identification based on IORnet'. Samen vormen ze een unieke vingerafdruk.

Citeer dit