Towards more specific estimation of membership functions for data-driven fuzzy inference systems

C.E.M. Fuchs, A.M. Wilbik, U. Kaymak

Onderzoeksoutput: Hoofdstuk in Boek/Rapport/CongresprocedureConferentiebijdrageAcademicpeer review

12 Citaten (Scopus)
4 Downloads (Pure)

Samenvatting

Many fuzzy inference systems are built estimating their parameters from data. In particular, Takagi-Sugeno systems have been used a lot in data-driven fuzzy modeling. In this paper, we investigate one step in the data-driven identification of these models, namely the antecedent estimation when fuzzy clustering is used for estimating antecedent memberships and fuzzy rules. We propose removing noise coming from cluster membership values to obtain more specific antecedent sets, which is important for the interpretability of the models. The results obtained and presented in this paper show that this additional step leads to improved performance of the fuzzy model and higher specificity of the antecedent sets.

Originele taal-2Engels
Titel2018 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE)
Plaats van productiePiscataway
UitgeverijInstitute of Electrical and Electronics Engineers
Aantal pagina's8
ISBN van elektronische versie9781509060207
DOI's
StatusGepubliceerd - jul. 2018
Evenement2018 IEEE International Conference on Fuzzy Systems, FUZZ 2018 - Rio de Janeiro, Brazilië
Duur: 8 jul. 201813 jul. 2018

Congres

Congres2018 IEEE International Conference on Fuzzy Systems, FUZZ 2018
Verkorte titelFUZZ 2018
Land/RegioBrazilië
StadRio de Janeiro
Periode8/07/1813/07/18

Vingerafdruk

Duik in de onderzoeksthema's van 'Towards more specific estimation of membership functions for data-driven fuzzy inference systems'. Samen vormen ze een unieke vingerafdruk.

Citeer dit