Towards Model Order Selection for Robust-Control-Relevant System Identification

P.J.M.M. Tacx, Robin de Rozario, Tom A.E. Oomen

Onderzoeksoutput: Hoofdstuk in Boek/Rapport/CongresprocedureConferentiebijdrageAcademicpeer review

Samenvatting

Robust control allows for guaranteed performance for a range of candidate models. The aim of this paper is to investigate the role of model complexity in the identification of model sets for robust control. A key observation is that model accuracy and model complexity should depend on the control goal. Regularization using a worst-case control criterion in conjunction with a specific model uncertainty structure allows robust control of multivariable systems. Simulations confirm that the model order depends on the control objectives. Overall, the framework enables systematic identification of model sets for robust control.
Originele taal-2Engels
TitelPreprints 21st IFAC World Congress 2020
Aantal pagina's1
StatusGepubliceerd - 2020
Evenement21st World Congress of the International Federation of Aufomatic Control (IFAC 2020 World Congress) - Berlin, Duitsland
Duur: 12 jul. 202017 jul. 2020
Congresnummer: 21
https://www.ifac2020.org/

Congres

Congres21st World Congress of the International Federation of Aufomatic Control (IFAC 2020 World Congress)
Verkorte titelIFAC 2020
Land/RegioDuitsland
StadBerlin
Periode12/07/2017/07/20
Internet adres

Vingerafdruk

Duik in de onderzoeksthema's van 'Towards Model Order Selection for Robust-Control-Relevant System Identification'. Samen vormen ze een unieke vingerafdruk.

Citeer dit