Samenvatting
Robust control allows for guaranteed performance for a range of candidate models. The aim of this paper is to investigate the role of model complexity in the identification of model sets for robust control. A key observation is that model accuracy and model complexity should depend on the control goal. Regularization using a worst-case control criterion in conjunction with a specific model uncertainty structure allows robust control of multivariable systems. Simulations confirm that the model order depends on the control objectives. Overall, the framework enables systematic identification of model sets for robust control.
Originele taal-2 | Engels |
---|---|
Titel | Preprints 21st IFAC World Congress 2020 |
Aantal pagina's | 1 |
Status | Gepubliceerd - 2020 |
Evenement | 21st World Congress of the International Federation of Aufomatic Control (IFAC 2020 World Congress) - Berlin, Duitsland Duur: 12 jul. 2020 → 17 jul. 2020 Congresnummer: 21 https://www.ifac2020.org/ |
Congres
Congres | 21st World Congress of the International Federation of Aufomatic Control (IFAC 2020 World Congress) |
---|---|
Verkorte titel | IFAC 2020 |
Land/Regio | Duitsland |
Stad | Berlin |
Periode | 12/07/20 → 17/07/20 |
Internet adres |