Towards all-optical label switching nodes with multicast

N. Yan

Onderzoeksoutput: ScriptieDissertatie 1 (Onderzoek TU/e / Promotie TU/e)Academic

Uittreksel

Fiber optics has developed so rapidly during the last decades that it has be- come the backbone of our communication systems. Evolved from initially static single-channel point-to-point links, the current advanced optical backbone net- work consists mostly of wavelength-division multiplexed (WDM) networks with optical add/drop multiplexing nodes and optical cross-connects that can switch data in the optical domain. However, the commercially implemented optical net- work nodes are still performing optical circuit switching using wavelength routing. The dedicated use of wavelength and infrequent recon¯guration result in relatively poor bandwidth utilization. The success of electronic packet switching has inspired researchers to improve the °exibility, e±ciency, granularity and network utiliza- tion of optical networks by introducing optical packet switching using short, local optical labels for forwarding decision making at intermediate optical core network nodes, a technique that is referred to as optical label switching (OLS). Various research demonstrations on OLS systems have been reported with transparent optical packet payload forwarding based on electronic packet label processing, taking advantage of the mature technologies of electronic logical cir- cuitry. This approach requires optic-electronic-optic (OEO) conversion of the op- tical labels, a costly and power consuming procedure particularly for high-speed labels. As optical packet payload bit rate increases from gigabit per second (Gb/s) to terabit per second (Tb/s) or higher, the increased speed of the optical labels will eventually face the electronic bottleneck, so that the OEO conversion and the electronic label processing will be no longer e±cient. OLS with label processing in the optical domain, namely, all-optical label switching (AOLS), will become necessary. Di®erent AOLS techniques have been proposed in the last ¯ve years. In this thesis, AOLS node architectures based on optical time-serial label processing are presented for WDM optical packets. The unicast node architecture, where each optical packet is to be sent to only one output port of the node, has been in- vestigated and partially demonstrated in the EU IST-LASAGNE project. This thesis contributes to the multicast aspects of the AOLS nodes, where the optical packets can be forwarded to multiple or all output ports of a node. Multicast capable AOLS nodes are becoming increasingly interesting due to the exponen- tial growth of the emerging multicast Internet and modern data services such as video streaming, high de¯nition TV, multi-party online games, and enterprise ap- plications such as video conferencing and optical storage area networks. Current electronic routers implement multicast in the Internet protocol (IP) layer, which requires not only the OEO conversion of the optical packets, but also exhaus- tive routing table lookup of the globally unique IP addresses. Despite that, there has been no extensive studies on AOLS multicast nodes, technologies and tra±c performance, apart from a few proof-of-principle experimental demonstrations. In this thesis, three aspects of the multicast capable AOLS nodes are addressed: 1. Logical design of the AOLS multicast node architectures, as well as func- tional subsystems and interconnections, based on state-of-the-art literature research of the ¯eld and the subject. 2. Computer simulations of the tra±c performance of di®erent AOLS unicast and multicast node architectures, using a custom-developed AOLS simulator AOLSim. 3. Experimental demonstrations in laboratory and computer simulations using the commercially available simulator VPItransmissionMakerTM, to evaluate the physical layer performance of the required all-optical multicast technolo- gies. A few selected multi-wavelength conversion (MWC) techniques are particularly looked into. MWC is an essential subsystem of the AOLS node for realizing optical packet multicast by making multiple copies of the optical packet all-optically onto di®er- ent wavelengths channels. In this thesis, theMWC techniques based on cross-phase modulation and four-wave mixing are extensively investigated. The former tech- nique o®ers more wavelength °exibility and good conversion e±ciency, but it is only applicable to intensity modulated signals. The latter technique, on the other hand, o®ers strict transparency in data rate and modulation format, but its work- ing wavelengths are limited by the device or component used, and the conversion e±ciency is considerably lower. The proposals and results presented in this thesis show feasibility of all-optical packet switching and multicasting at line speed without any OEO conversion and electronic processing. The scalability and the costly optical components of the AOLS nodes have been so far two of the major obstacles for commercialization of the AOLS concept. This thesis also introduced a novel, scalable optical labeling concept and a label processing scheme for the AOLS multicast nodes. The pro- posed scheme makes use of the spatial positions of each label bit instead of the total absolute value of all the label bits. Thus for an n-bit label, the complexity of the label processor is determined by n instead of 2n.
TaalEngels
KwalificatieDoctor in de Filosofie
Toekennende instantie
  • Faculteit Electrical Engineering
Begeleider(s)/adviseur
  • Koonen, Ton, Promotor
  • Tangdiongga, Eduward, Co-Promotor
Datum van toekenning14 apr 2008
Plaats van publicatieEindhoven
Uitgever
Gedrukte ISBN's978-90-386-1834-0
DOI's
StatusGepubliceerd - 2008

Vingerafdruk

Labels
Optics
Wavelength
Optical frequency conversion
Packet switching
Demonstrations
Internet protocols
Processing
Video conferencing
Switching circuits
Multicasting
Table lookup
Four wave mixing
Switching systems

Citeer dit

Yan, N. (2008). Towards all-optical label switching nodes with multicast Eindhoven: Technische Universiteit Eindhoven DOI: 10.6100/IR633943
Yan, N.. / Towards all-optical label switching nodes with multicast. Eindhoven : Technische Universiteit Eindhoven, 2008. 232 blz.
@phdthesis{cc8630f022dd40e895dc992bbf88fd68,
title = "Towards all-optical label switching nodes with multicast",
abstract = "Fiber optics has developed so rapidly during the last decades that it has be- come the backbone of our communication systems. Evolved from initially static single-channel point-to-point links, the current advanced optical backbone net- work consists mostly of wavelength-division multiplexed (WDM) networks with optical add/drop multiplexing nodes and optical cross-connects that can switch data in the optical domain. However, the commercially implemented optical net- work nodes are still performing optical circuit switching using wavelength routing. The dedicated use of wavelength and infrequent recon¯guration result in relatively poor bandwidth utilization. The success of electronic packet switching has inspired researchers to improve the °exibility, e±ciency, granularity and network utiliza- tion of optical networks by introducing optical packet switching using short, local optical labels for forwarding decision making at intermediate optical core network nodes, a technique that is referred to as optical label switching (OLS). Various research demonstrations on OLS systems have been reported with transparent optical packet payload forwarding based on electronic packet label processing, taking advantage of the mature technologies of electronic logical cir- cuitry. This approach requires optic-electronic-optic (OEO) conversion of the op- tical labels, a costly and power consuming procedure particularly for high-speed labels. As optical packet payload bit rate increases from gigabit per second (Gb/s) to terabit per second (Tb/s) or higher, the increased speed of the optical labels will eventually face the electronic bottleneck, so that the OEO conversion and the electronic label processing will be no longer e±cient. OLS with label processing in the optical domain, namely, all-optical label switching (AOLS), will become necessary. Di{\circledR}erent AOLS techniques have been proposed in the last ¯ve years. In this thesis, AOLS node architectures based on optical time-serial label processing are presented for WDM optical packets. The unicast node architecture, where each optical packet is to be sent to only one output port of the node, has been in- vestigated and partially demonstrated in the EU IST-LASAGNE project. This thesis contributes to the multicast aspects of the AOLS nodes, where the optical packets can be forwarded to multiple or all output ports of a node. Multicast capable AOLS nodes are becoming increasingly interesting due to the exponen- tial growth of the emerging multicast Internet and modern data services such as video streaming, high de¯nition TV, multi-party online games, and enterprise ap- plications such as video conferencing and optical storage area networks. Current electronic routers implement multicast in the Internet protocol (IP) layer, which requires not only the OEO conversion of the optical packets, but also exhaus- tive routing table lookup of the globally unique IP addresses. Despite that, there has been no extensive studies on AOLS multicast nodes, technologies and tra±c performance, apart from a few proof-of-principle experimental demonstrations. In this thesis, three aspects of the multicast capable AOLS nodes are addressed: 1. Logical design of the AOLS multicast node architectures, as well as func- tional subsystems and interconnections, based on state-of-the-art literature research of the ¯eld and the subject. 2. Computer simulations of the tra±c performance of di{\circledR}erent AOLS unicast and multicast node architectures, using a custom-developed AOLS simulator AOLSim. 3. Experimental demonstrations in laboratory and computer simulations using the commercially available simulator VPItransmissionMakerTM, to evaluate the physical layer performance of the required all-optical multicast technolo- gies. A few selected multi-wavelength conversion (MWC) techniques are particularly looked into. MWC is an essential subsystem of the AOLS node for realizing optical packet multicast by making multiple copies of the optical packet all-optically onto di{\circledR}er- ent wavelengths channels. In this thesis, theMWC techniques based on cross-phase modulation and four-wave mixing are extensively investigated. The former tech- nique o{\circledR}ers more wavelength °exibility and good conversion e±ciency, but it is only applicable to intensity modulated signals. The latter technique, on the other hand, o{\circledR}ers strict transparency in data rate and modulation format, but its work- ing wavelengths are limited by the device or component used, and the conversion e±ciency is considerably lower. The proposals and results presented in this thesis show feasibility of all-optical packet switching and multicasting at line speed without any OEO conversion and electronic processing. The scalability and the costly optical components of the AOLS nodes have been so far two of the major obstacles for commercialization of the AOLS concept. This thesis also introduced a novel, scalable optical labeling concept and a label processing scheme for the AOLS multicast nodes. The pro- posed scheme makes use of the spatial positions of each label bit instead of the total absolute value of all the label bits. Thus for an n-bit label, the complexity of the label processor is determined by n instead of 2n.",
author = "N. Yan",
year = "2008",
doi = "10.6100/IR633943",
language = "English",
isbn = "978-90-386-1834-0",
publisher = "Technische Universiteit Eindhoven",
school = "Department of Electrical Engineering",

}

Yan, N 2008, 'Towards all-optical label switching nodes with multicast', Doctor in de Filosofie, Faculteit Electrical Engineering, Eindhoven. DOI: 10.6100/IR633943

Towards all-optical label switching nodes with multicast. / Yan, N.

Eindhoven : Technische Universiteit Eindhoven, 2008. 232 blz.

Onderzoeksoutput: ScriptieDissertatie 1 (Onderzoek TU/e / Promotie TU/e)Academic

TY - THES

T1 - Towards all-optical label switching nodes with multicast

AU - Yan,N.

PY - 2008

Y1 - 2008

N2 - Fiber optics has developed so rapidly during the last decades that it has be- come the backbone of our communication systems. Evolved from initially static single-channel point-to-point links, the current advanced optical backbone net- work consists mostly of wavelength-division multiplexed (WDM) networks with optical add/drop multiplexing nodes and optical cross-connects that can switch data in the optical domain. However, the commercially implemented optical net- work nodes are still performing optical circuit switching using wavelength routing. The dedicated use of wavelength and infrequent recon¯guration result in relatively poor bandwidth utilization. The success of electronic packet switching has inspired researchers to improve the °exibility, e±ciency, granularity and network utiliza- tion of optical networks by introducing optical packet switching using short, local optical labels for forwarding decision making at intermediate optical core network nodes, a technique that is referred to as optical label switching (OLS). Various research demonstrations on OLS systems have been reported with transparent optical packet payload forwarding based on electronic packet label processing, taking advantage of the mature technologies of electronic logical cir- cuitry. This approach requires optic-electronic-optic (OEO) conversion of the op- tical labels, a costly and power consuming procedure particularly for high-speed labels. As optical packet payload bit rate increases from gigabit per second (Gb/s) to terabit per second (Tb/s) or higher, the increased speed of the optical labels will eventually face the electronic bottleneck, so that the OEO conversion and the electronic label processing will be no longer e±cient. OLS with label processing in the optical domain, namely, all-optical label switching (AOLS), will become necessary. Di®erent AOLS techniques have been proposed in the last ¯ve years. In this thesis, AOLS node architectures based on optical time-serial label processing are presented for WDM optical packets. The unicast node architecture, where each optical packet is to be sent to only one output port of the node, has been in- vestigated and partially demonstrated in the EU IST-LASAGNE project. This thesis contributes to the multicast aspects of the AOLS nodes, where the optical packets can be forwarded to multiple or all output ports of a node. Multicast capable AOLS nodes are becoming increasingly interesting due to the exponen- tial growth of the emerging multicast Internet and modern data services such as video streaming, high de¯nition TV, multi-party online games, and enterprise ap- plications such as video conferencing and optical storage area networks. Current electronic routers implement multicast in the Internet protocol (IP) layer, which requires not only the OEO conversion of the optical packets, but also exhaus- tive routing table lookup of the globally unique IP addresses. Despite that, there has been no extensive studies on AOLS multicast nodes, technologies and tra±c performance, apart from a few proof-of-principle experimental demonstrations. In this thesis, three aspects of the multicast capable AOLS nodes are addressed: 1. Logical design of the AOLS multicast node architectures, as well as func- tional subsystems and interconnections, based on state-of-the-art literature research of the ¯eld and the subject. 2. Computer simulations of the tra±c performance of di®erent AOLS unicast and multicast node architectures, using a custom-developed AOLS simulator AOLSim. 3. Experimental demonstrations in laboratory and computer simulations using the commercially available simulator VPItransmissionMakerTM, to evaluate the physical layer performance of the required all-optical multicast technolo- gies. A few selected multi-wavelength conversion (MWC) techniques are particularly looked into. MWC is an essential subsystem of the AOLS node for realizing optical packet multicast by making multiple copies of the optical packet all-optically onto di®er- ent wavelengths channels. In this thesis, theMWC techniques based on cross-phase modulation and four-wave mixing are extensively investigated. The former tech- nique o®ers more wavelength °exibility and good conversion e±ciency, but it is only applicable to intensity modulated signals. The latter technique, on the other hand, o®ers strict transparency in data rate and modulation format, but its work- ing wavelengths are limited by the device or component used, and the conversion e±ciency is considerably lower. The proposals and results presented in this thesis show feasibility of all-optical packet switching and multicasting at line speed without any OEO conversion and electronic processing. The scalability and the costly optical components of the AOLS nodes have been so far two of the major obstacles for commercialization of the AOLS concept. This thesis also introduced a novel, scalable optical labeling concept and a label processing scheme for the AOLS multicast nodes. The pro- posed scheme makes use of the spatial positions of each label bit instead of the total absolute value of all the label bits. Thus for an n-bit label, the complexity of the label processor is determined by n instead of 2n.

AB - Fiber optics has developed so rapidly during the last decades that it has be- come the backbone of our communication systems. Evolved from initially static single-channel point-to-point links, the current advanced optical backbone net- work consists mostly of wavelength-division multiplexed (WDM) networks with optical add/drop multiplexing nodes and optical cross-connects that can switch data in the optical domain. However, the commercially implemented optical net- work nodes are still performing optical circuit switching using wavelength routing. The dedicated use of wavelength and infrequent recon¯guration result in relatively poor bandwidth utilization. The success of electronic packet switching has inspired researchers to improve the °exibility, e±ciency, granularity and network utiliza- tion of optical networks by introducing optical packet switching using short, local optical labels for forwarding decision making at intermediate optical core network nodes, a technique that is referred to as optical label switching (OLS). Various research demonstrations on OLS systems have been reported with transparent optical packet payload forwarding based on electronic packet label processing, taking advantage of the mature technologies of electronic logical cir- cuitry. This approach requires optic-electronic-optic (OEO) conversion of the op- tical labels, a costly and power consuming procedure particularly for high-speed labels. As optical packet payload bit rate increases from gigabit per second (Gb/s) to terabit per second (Tb/s) or higher, the increased speed of the optical labels will eventually face the electronic bottleneck, so that the OEO conversion and the electronic label processing will be no longer e±cient. OLS with label processing in the optical domain, namely, all-optical label switching (AOLS), will become necessary. Di®erent AOLS techniques have been proposed in the last ¯ve years. In this thesis, AOLS node architectures based on optical time-serial label processing are presented for WDM optical packets. The unicast node architecture, where each optical packet is to be sent to only one output port of the node, has been in- vestigated and partially demonstrated in the EU IST-LASAGNE project. This thesis contributes to the multicast aspects of the AOLS nodes, where the optical packets can be forwarded to multiple or all output ports of a node. Multicast capable AOLS nodes are becoming increasingly interesting due to the exponen- tial growth of the emerging multicast Internet and modern data services such as video streaming, high de¯nition TV, multi-party online games, and enterprise ap- plications such as video conferencing and optical storage area networks. Current electronic routers implement multicast in the Internet protocol (IP) layer, which requires not only the OEO conversion of the optical packets, but also exhaus- tive routing table lookup of the globally unique IP addresses. Despite that, there has been no extensive studies on AOLS multicast nodes, technologies and tra±c performance, apart from a few proof-of-principle experimental demonstrations. In this thesis, three aspects of the multicast capable AOLS nodes are addressed: 1. Logical design of the AOLS multicast node architectures, as well as func- tional subsystems and interconnections, based on state-of-the-art literature research of the ¯eld and the subject. 2. Computer simulations of the tra±c performance of di®erent AOLS unicast and multicast node architectures, using a custom-developed AOLS simulator AOLSim. 3. Experimental demonstrations in laboratory and computer simulations using the commercially available simulator VPItransmissionMakerTM, to evaluate the physical layer performance of the required all-optical multicast technolo- gies. A few selected multi-wavelength conversion (MWC) techniques are particularly looked into. MWC is an essential subsystem of the AOLS node for realizing optical packet multicast by making multiple copies of the optical packet all-optically onto di®er- ent wavelengths channels. In this thesis, theMWC techniques based on cross-phase modulation and four-wave mixing are extensively investigated. The former tech- nique o®ers more wavelength °exibility and good conversion e±ciency, but it is only applicable to intensity modulated signals. The latter technique, on the other hand, o®ers strict transparency in data rate and modulation format, but its work- ing wavelengths are limited by the device or component used, and the conversion e±ciency is considerably lower. The proposals and results presented in this thesis show feasibility of all-optical packet switching and multicasting at line speed without any OEO conversion and electronic processing. The scalability and the costly optical components of the AOLS nodes have been so far two of the major obstacles for commercialization of the AOLS concept. This thesis also introduced a novel, scalable optical labeling concept and a label processing scheme for the AOLS multicast nodes. The pro- posed scheme makes use of the spatial positions of each label bit instead of the total absolute value of all the label bits. Thus for an n-bit label, the complexity of the label processor is determined by n instead of 2n.

U2 - 10.6100/IR633943

DO - 10.6100/IR633943

M3 - Phd Thesis 1 (Research TU/e / Graduation TU/e)

SN - 978-90-386-1834-0

PB - Technische Universiteit Eindhoven

CY - Eindhoven

ER -

Yan N. Towards all-optical label switching nodes with multicast. Eindhoven: Technische Universiteit Eindhoven, 2008. 232 blz. Beschikbaar vanaf, DOI: 10.6100/IR633943