Samenvatting
In this work, we present a camera geopositioning system based on matching a query image against a database with panoramic images. For matching, our system uses memory vectors aggregated from global image descriptors based on convolutional features to facilitate fast searching in the database. To speed up searching, a clustering algorithm is used to balance geographical positioning and computation time. We refine the obtained position from the query image using a new outlier removal algorithm. The matching of the query image is obtained with a recall@5 larger than 90% for panorama-to-panorama matching. We cluster available panoramas from geographically adjacent locations into a single compact representation and observe computational gains of approximately 50% at the cost of only a small (approximately 3%) recall loss. Finally, we present a coordinate estimation algorithm that reduces the median geopositioning error by up to 20%.
Originele taal-2 | Engels |
---|---|
Titel | Eleventh International Conference on Machine Vision, ICMV 2018 |
Redacteuren | Antanas Verikas, Dmitry P. Nikolaev, Petia Radeva, Jianhong Zhou |
Plaats van productie | Bellingham |
Uitgeverij | SPIE |
Aantal pagina's | 8 |
ISBN van elektronische versie | 9781510627482 |
DOI's | |
Status | Gepubliceerd - 1 jan. 2019 |
Evenement | 11th International Conference on Machine Vision, ICMV 2018 - Munich, Duitsland Duur: 1 nov. 2018 → 3 nov. 2018 Congresnummer: 11 |
Publicatie series
Naam | Proceedings of SPIE |
---|---|
Volume | 11041 |
ISSN van geprinte versie | 0277-786X |
Congres
Congres | 11th International Conference on Machine Vision, ICMV 2018 |
---|---|
Verkorte titel | ICMV |
Land/Regio | Duitsland |
Stad | Munich |
Periode | 1/11/18 → 3/11/18 |