### Uittreksel

Particle based approaches are one of the recent modeling techniques to overcome the computational limitation in multiscale modeling of complex processes, for example a heterogeneous catalytic reactor. We propose an efficient model for a chemical reactor where hydrodynamics of the solvent is determined by Stochastic Rotation Dynamics and a reaction occurs over a catalytic surface where the reaction kinetics follows the mean-field assumption. We highlight the modeling techniques required to simulate such a system and then validate the model for its separate and combined components of convection, diffusion and reaction(s). A dimensionless analysis helps compare processes occurring at different scales. We determine the Reynolds number, Re, and the Damkohler numbers, Da and Da_{L} in terms of key quantities. The approach is then used to analyse a reaction (a) following the Langmuir-Hinshelwood kinetics, (b) generating product particles with different self-diffusivity values as compared to the reactant particles. The model developed can further incorporate reactions occurring inside complex geometries (pore diffusion) and also be used to study complex reaction systems for which the mean-field assumption is no longer valid.

Taal | Engels |
---|---|

Pagina's | 184-187 |

Tijdschrift | Chemical Engineering Science |

Volume | 198 |

DOI's | |

Status | Gepubliceerd - 28 apr 2019 |

### Vingerafdruk

### Trefwoorden

### Citeer dit

}

**Towards a particle based approach for multiscale modeling of heterogeneous catalytic reactors.** / Sengar, A. (Corresponding author); Kuipers, J.A.M.; van Santen, R.A.; Padding, J.T.

Onderzoeksoutput: Bijdrage aan tijdschrift › Tijdschriftartikel › Academic › peer review

TY - JOUR

T1 - Towards a particle based approach for multiscale modeling of heterogeneous catalytic reactors

AU - Sengar,A.

AU - Kuipers,J.A.M.

AU - van Santen,R.A.

AU - Padding,J.T.

PY - 2019/4/28

Y1 - 2019/4/28

N2 - Particle based approaches are one of the recent modeling techniques to overcome the computational limitation in multiscale modeling of complex processes, for example a heterogeneous catalytic reactor. We propose an efficient model for a chemical reactor where hydrodynamics of the solvent is determined by Stochastic Rotation Dynamics and a reaction occurs over a catalytic surface where the reaction kinetics follows the mean-field assumption. We highlight the modeling techniques required to simulate such a system and then validate the model for its separate and combined components of convection, diffusion and reaction(s). A dimensionless analysis helps compare processes occurring at different scales. We determine the Reynolds number, Re, and the Damkohler numbers, Da and DaL in terms of key quantities. The approach is then used to analyse a reaction (a) following the Langmuir-Hinshelwood kinetics, (b) generating product particles with different self-diffusivity values as compared to the reactant particles. The model developed can further incorporate reactions occurring inside complex geometries (pore diffusion) and also be used to study complex reaction systems for which the mean-field assumption is no longer valid.

AB - Particle based approaches are one of the recent modeling techniques to overcome the computational limitation in multiscale modeling of complex processes, for example a heterogeneous catalytic reactor. We propose an efficient model for a chemical reactor where hydrodynamics of the solvent is determined by Stochastic Rotation Dynamics and a reaction occurs over a catalytic surface where the reaction kinetics follows the mean-field assumption. We highlight the modeling techniques required to simulate such a system and then validate the model for its separate and combined components of convection, diffusion and reaction(s). A dimensionless analysis helps compare processes occurring at different scales. We determine the Reynolds number, Re, and the Damkohler numbers, Da and DaL in terms of key quantities. The approach is then used to analyse a reaction (a) following the Langmuir-Hinshelwood kinetics, (b) generating product particles with different self-diffusivity values as compared to the reactant particles. The model developed can further incorporate reactions occurring inside complex geometries (pore diffusion) and also be used to study complex reaction systems for which the mean-field assumption is no longer valid.

KW - Heterogenous catalysis

KW - Multicomponent diffusion

KW - Multiscale modelling

KW - Nonlinear reactions

KW - Stochastic rotation dynamics

KW - Unsteady state modelling

UR - http://www.scopus.com/inward/record.url?scp=85055743698&partnerID=8YFLogxK

U2 - 10.1016/j.ces.2018.10.038

DO - 10.1016/j.ces.2018.10.038

M3 - Article

VL - 198

SP - 184

EP - 187

JO - Chemical Engineering Science

T2 - Chemical Engineering Science

JF - Chemical Engineering Science

SN - 0009-2509

ER -