Activiteiten per jaar
Samenvatting
Signature extraction is a critical preprocessing step in forensic log analysis because it enables sophisticated analysis techniques to be applied to logs. Currently, most signature extraction frameworks either use rule-based approaches or handcrafted algorithms. Rule-based systems are error-prone and require high maintenance effort. Hand-crafted algorithms use heuristics and tend to work well only for specialized use cases. In this paper we present a novel approach to extract signatures from forensic logs that is based on a neural language model. This language model learns to identify mutable and non-mutable parts in a log message. We use this information to extract signatures. Neural language models have shown to work extremely well for learning complex relationships in natural language text. We experimentally demonstrate that our model can detect which parts are mutable with an accuracy of 86.4%. We also show how extracted signatures can be used for clustering log lines.
Originele taal-2 | Engels |
---|---|
Titel | 2017 5th International Symposium on Digital Forensic and Security, ISDFS 2017 |
Redacteuren | Bela Genge, Piroska Haller |
Plaats van productie | Piscataway |
Uitgeverij | Institute of Electrical and Electronics Engineers |
Aantal pagina's | 6 |
ISBN van elektronische versie | 978-1-5090-5835-8 |
ISBN van geprinte versie | 978-1-5090-5836-5 |
DOI's | |
Status | Gepubliceerd - 1 mei 2017 |
Vingerafdruk
Duik in de onderzoeksthema's van 'Towards a neural language model for signature extraction from forensic logs'. Samen vormen ze een unieke vingerafdruk.Activiteiten
- 1 Aangemelde presentatie
-
5th International Symposium on Digital forensic and Security
Thaler, S. (Spreker)
26 apr. 2017 → 28 apr. 2017Activiteit: Types gesprekken of presentaties › Aangemelde presentatie › Wetenschappelijk