Towards a constructive version of Banaszczyk's vector balancing theorem

Daniel Dadush, Shashwat Garg, Shachar Lovett, Aleksandar Nikolov

Onderzoeksoutput: Hoofdstuk in Boek/Rapport/CongresprocedureConferentiebijdrageAcademicpeer review

7 Citaten (Scopus)
28 Downloads (Pure)

Samenvatting

An important theorem of Banaszczyk (Random Structures & Algorithms-98) states that for any sequence of vectors of ℓ2 norm at most 1/5 and any convex body K of Gaussian measure 1/2 in ℝn, there exists a signed combination of these vectors which lands inside K. A major open problem is to devise a constructive version of Banaszczyk's vector balancing theorem, i.e.To find an efficient algorithm which constructs the signed combination. We make progress towards this goal along several fronts. As our first contribution, we show an equivalence between Banaszczyk's theorem and the existence of O(1)-subgaussian distributions over signed combinations. For the case of symmetric convex bodies, our equivalence implies the existence of a universal signing algorithm (i.e. independent of the body), which simply samples from the subgaussian sign distribution and checks to see if the associated combination lands inside the body. For asymmetric convex bodies, we provide a novel recentering procedure, which allows us to reduce to the case where the body is symmetric. As our second main contribution, we show that the above framework can be efficiently implemented when the vectors have length O(1/√log n), recovering Banaszczyk's results under this stronger assumption. More precisely, we use random walk techniques to produce the required O(1)-subgaussian signing distributions when the vectors have length O(1/√log n), and use a stochastic gradient ascent method to implement the recentering procedure for asymmetric bodies.

Originele taal-2Engels
TitelApproximation, randomization, and combinatorial optimization: algorithms and Techniques - 19th International Workshop, APPROX 2016 and 20th International Workshop, RANDOM 2016
RedacteurenKlaus Jansen, Claire Mathieu, José D.P. Rolim, Chris Umans
Plaats van productieDagstuhl
UitgeverijSchloss Dagstuhl - Leibniz-Zentrum für Informatik
Aantal pagina's12
ISBN van elektronische versie978-3-95977-018-7
DOI's
StatusGepubliceerd - 1 sep. 2016
Evenement19th International Workshop on Approximation Algorithms for Combinatorial Optimization Problems, APPROX 2016 and the 20th International Workshop on Randomization and Computation, RANDOM 2016 - Paris, Frankrijk
Duur: 7 sep. 20169 sep. 2016

Publicatie series

NaamLeibniz International Proceedings in Informatics (LIPIcs)
Volume60
ISSN van geprinte versie1868-8969

Congres

Congres19th International Workshop on Approximation Algorithms for Combinatorial Optimization Problems, APPROX 2016 and the 20th International Workshop on Randomization and Computation, RANDOM 2016
Land/RegioFrankrijk
StadParis
Periode7/09/169/09/16

Vingerafdruk

Duik in de onderzoeksthema's van 'Towards a constructive version of Banaszczyk's vector balancing theorem'. Samen vormen ze een unieke vingerafdruk.

Citeer dit