Toward learning Lattice Boltzmann collision operators

Alessandro Corbetta, Alessandro Gabbana (Corresponding author), Vitaliy Gyrya, Daniel Livescu, Joost Prins, Federico Toschi

Onderzoeksoutput: Bijdrage aan tijdschriftTijdschriftartikelAcademicpeer review

5 Citaten (Scopus)
172 Downloads (Pure)

Samenvatting

In this work, we explore the possibility of learning from data collision operators for the Lattice Boltzmann Method using a deep learning approach. We compare a hierarchy of designs of the neural network (NN) collision operator and evaluate the performance of the resulting LBM method in reproducing time dynamics of several canonical flows. In the current study, as a first attempt to address the learning problem, the data were generated by a single relaxation time BGK operator. We demonstrate that vanilla NN architecture has very limited accuracy. On the other hand, by embedding physical properties, such as conservation laws and symmetries, it is possible to dramatically increase the accuracy by several orders of magnitude and correctly reproduce the short and long time dynamics of standard fluid flows.
Originele taal-2Engels
Artikelnummer10
Pagina's (van-tot)10
Aantal pagina's15
TijdschriftEuropean Physical Journal E
Volume46
Nummer van het tijdschrift3
DOI's
StatusGepubliceerd - 6 mrt. 2023

Vingerafdruk

Duik in de onderzoeksthema's van 'Toward learning Lattice Boltzmann collision operators'. Samen vormen ze een unieke vingerafdruk.

Citeer dit