Samenvatting
We prove that any finite-degree polynomial functor over an infinite field is topologically Noetherian. This theorem is motivated by the recent resolution, by Ananyan-Hochster, of Stillman's conjecture; and a recent Noetherianity proof by Derksen-Eggermont-Snowden for the space of cubics. Via work by Erman-Sam-Snowden, our theorem implies Stillman's conjecture and indeed boundedness of a wider class of invariants of ideals in polynomial rings with a fixed number of generators of prescribed degrees.
Originele taal-2 | Engels |
---|---|
Pagina's (van-tot) | 691-707 |
Aantal pagina's | 17 |
Tijdschrift | Journal of the American Mathematical Society |
Volume | 32 |
Nummer van het tijdschrift | 3 |
DOI's | |
Status | Gepubliceerd - 18 apr. 2019 |