Topological noetherianity of polynomial functors

Jan Draisma (Corresponding author)

Onderzoeksoutput: Bijdrage aan tijdschriftTijdschriftartikelAcademicpeer review

24 Citaten (Scopus)
89 Downloads (Pure)

Samenvatting

We prove that any finite-degree polynomial functor over an infinite field is topologically Noetherian. This theorem is motivated by the recent resolution, by Ananyan-Hochster, of Stillman's conjecture; and a recent Noetherianity proof by Derksen-Eggermont-Snowden for the space of cubics. Via work by Erman-Sam-Snowden, our theorem implies Stillman's conjecture and indeed boundedness of a wider class of invariants of ideals in polynomial rings with a fixed number of generators of prescribed degrees.

Originele taal-2Engels
Pagina's (van-tot)691-707
Aantal pagina's17
TijdschriftJournal of the American Mathematical Society
Volume32
Nummer van het tijdschrift3
DOI's
StatusGepubliceerd - 18 apr. 2019

Vingerafdruk

Duik in de onderzoeksthema's van 'Topological noetherianity of polynomial functors'. Samen vormen ze een unieke vingerafdruk.

Citeer dit