Topological degree as a discrete diagnostic for disentanglement, with applications to the ΔVAE

Onderzoeksoutput: Bijdrage aan congresPaperAcademic

Samenvatting

We investigate the ability of Diffusion Variational Autoencoder (ΔVAE) with unit sphere $S^2$ as latent space to capture topological and geometrical structure and disentangle latent factors in datasets. For this, we introduce a new diagnostic of disentanglement: namely the topological degree of the encoder, which is a map from the data manifold to the latent space. By using tools from homology theory, we derive and implement an algorithm that computes this degree. We use the algorithm to compute the degree of the encoder of models that result from the training procedure. Our experimental results show that the ΔVAE achieves relatively small LSBD scores, and that regardless of the degree after initialization, the degree of the encoder after training becomes −1 or +1, which implies that the resulting encoder is at least homotopic to a homeomorphism.
Originele taal-2Engels
StatusGepubliceerd - 2024
Evenement27th International Conference on Discovery Science 2024 - Italy, Pisa, Italië
Duur: 14 okt. 202416 okt. 2024
http://ds2024.isti.cnr.it/program.html

Congres

Congres27th International Conference on Discovery Science 2024
Land/RegioItalië
StadPisa
Periode14/10/2416/10/24
Internet adres

Vingerafdruk

Duik in de onderzoeksthema's van 'Topological degree as a discrete diagnostic for disentanglement, with applications to the ΔVAE'. Samen vormen ze een unieke vingerafdruk.

Citeer dit