TY - JOUR
T1 - Time resolved laser induced fluorescence on argon intermediate pressure microwave discharges : measuring the depopulation rates of the 4p and 5p excited levels as induced by electron and atom collisions
AU - Palomares Linares, J.M.
AU - Graef, W.A.A.D.
AU - Hubner, S.
AU - Mullen, van der, J.J.A.M.
PY - 2013
Y1 - 2013
N2 - The reaction kinetics in the excitation space of Ar is explored by means of Laser Induced Fluorescence (LIF) experiments using the combination of high rep-rate YAG–Dye laser systems with a well defined and easily controllable surfatron induced plasma setup. The high rep-rate favors the photon statistics while the low energy per pulse avoids intrusive plasma laser interactions. An analysis shows that, despite the low energy per pulse, saturation can still be achieved even when the geometrical overlap and spectral overlap are optimal. Out of the various studies that can be performed with this setup we confine the current paper to the study of the direct responses to the laser pump action of three 4p and one 5p levels of the Ar system. By changing the plasma in a controlled way one gets for these levels the rates of electron and atom quenching and therewith the total destruction rates of electron and atom collisions. Comparison with literature shows that the classical hard sphere collision rate derived for hydrogen gives a good description for the observed electron quenching (e-quenching) in Ar whereas for heavy particle quenching (a-quenching) this agreement was only found for the 5p level. An important parameter in the study of electron excitation kinetics is the location of the boundary in the atomic system for which the number of electron collisions per radiative life time equals unity. It is observed that for the Ar system this boundary is positioned lower than what is expected on grounds of H-like formulas.
AB - The reaction kinetics in the excitation space of Ar is explored by means of Laser Induced Fluorescence (LIF) experiments using the combination of high rep-rate YAG–Dye laser systems with a well defined and easily controllable surfatron induced plasma setup. The high rep-rate favors the photon statistics while the low energy per pulse avoids intrusive plasma laser interactions. An analysis shows that, despite the low energy per pulse, saturation can still be achieved even when the geometrical overlap and spectral overlap are optimal. Out of the various studies that can be performed with this setup we confine the current paper to the study of the direct responses to the laser pump action of three 4p and one 5p levels of the Ar system. By changing the plasma in a controlled way one gets for these levels the rates of electron and atom quenching and therewith the total destruction rates of electron and atom collisions. Comparison with literature shows that the classical hard sphere collision rate derived for hydrogen gives a good description for the observed electron quenching (e-quenching) in Ar whereas for heavy particle quenching (a-quenching) this agreement was only found for the 5p level. An important parameter in the study of electron excitation kinetics is the location of the boundary in the atomic system for which the number of electron collisions per radiative life time equals unity. It is observed that for the Ar system this boundary is positioned lower than what is expected on grounds of H-like formulas.
U2 - 10.1016/j.sab.2013.06.010
DO - 10.1016/j.sab.2013.06.010
M3 - Article
SN - 0584-8547
VL - 88
SP - 156
EP - 166
JO - Spectrochimica Acta. Part B : Atomic Spectroscopy
JF - Spectrochimica Acta. Part B : Atomic Spectroscopy
ER -