Time-domain structural vibration simulations by solving the linear elasticity equations with the discontinuous Galerkin method

I. Sihar, M.C.J. Hornikx, P. Pranowo

Onderzoeksoutput: Hoofdstuk in Boek/Rapport/CongresprocedureConferentiebijdrageAcademic

101 Downloads (Pure)

Samenvatting

In the field of building acoustics, an efficient solution of the linear elasticity equations for vibro-acoustic problems is of interest. The focus of this work is on the structural part, with plate vibra-tion problems in particular. The linear elasticity equations in the stress-velocity formulation are solved in the time-domain for the three-dimensional plate problem. The numerical solution is obtained through the Runge-Kutta discontinuous Galerkin method, which has the potential to be highly parallelizable and thereby computationally very efficient. Numerical aspects of applying the discontinuous Galerkin method to this problem are discussed, especially on the force excita-tion and the boundary conditions of the plate problem. The accuracy of applying the discontinu-ous Galerkin solution is presented by comparing its results to results from analytical solutions. Several scenarios of plate variations with different boundary conditions are simulated to demon-strate the capabilities of the method.
Originele taal-2Engels
TitelProceedings of the 24th International Congress on Sound and Vibration
Plaats van productieLondon, UK
UitgeverijInternational Institute of Acoustics and Vibration (IIAV)
ISBN van elektronische versie978-1-906913-27-4
StatusGepubliceerd - 23 jul. 2017
Evenement24th International Congress on Sound and Vibration, ICSV 2017 - London, Verenigd Koninkrijk
Duur: 23 jul. 201727 jul. 2017
https://iiav.org/icsv24/
https://www.iiav.org/icsv24/

Congres

Congres24th International Congress on Sound and Vibration, ICSV 2017
Verkorte titelICSV24
Land/RegioVerenigd Koninkrijk
StadLondon
Periode23/07/1727/07/17
Internet adres

Vingerafdruk

Duik in de onderzoeksthema's van 'Time-domain structural vibration simulations by solving the linear elasticity equations with the discontinuous Galerkin method'. Samen vormen ze een unieke vingerafdruk.

Citeer dit